Lingyu Li , Chuanqing Zhang , Fanjie Yang , Zhi Fang
{"title":"Characteristics of radon transport and optimization of ventilation parameters in large-scale underground cavern","authors":"Lingyu Li , Chuanqing Zhang , Fanjie Yang , Zhi Fang","doi":"10.1016/j.jenvrad.2024.107577","DOIUrl":null,"url":null,"abstract":"<div><div>Radon penetrates into the underground caverns through the pores/fissures of the surrounding rock, resulting in high radon concentration area and endangering the health of construction personnel. The on-site monitoring of radon concentration in the underground powerhouse of Tuoba Hydropower Station is conducted in order to study the radon concentration level. The radon transport during the construction period of underground powerhouse under forced ventilation is established by Computational Fluid Dynamics (CFD) numerical simulation method. Furthermore, the distribution characteristics and long-term evolution law of radon concentration in underground powerhouse are revealed, and reasonable ventilation optimization measures are put forward and the results show that: (1) Blasting promotes the increase of radon concentration, while forced ventilation accelerates radon transport. (2) The airflow field along the axis is divided into a vortex distribution zone, a vortex influence zone and stable regions. (3) The radon transport includes both migration and diffusion processes based on forced ventilation. (4) The radon concentration decreases with the increase of height, while exhibits low concentration in the middle and high concentration on both sides at the same height. (5) Compared with forced ventilation, the combined ventilation can improve the ventilation efficiency and shorten the radon transport time. The research results can provide a scientific basis for the safety analysis and evaluation of deep engineering environment.</div></div>","PeriodicalId":15667,"journal":{"name":"Journal of environmental radioactivity","volume":"281 ","pages":"Article 107577"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental radioactivity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0265931X24002091","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Radon penetrates into the underground caverns through the pores/fissures of the surrounding rock, resulting in high radon concentration area and endangering the health of construction personnel. The on-site monitoring of radon concentration in the underground powerhouse of Tuoba Hydropower Station is conducted in order to study the radon concentration level. The radon transport during the construction period of underground powerhouse under forced ventilation is established by Computational Fluid Dynamics (CFD) numerical simulation method. Furthermore, the distribution characteristics and long-term evolution law of radon concentration in underground powerhouse are revealed, and reasonable ventilation optimization measures are put forward and the results show that: (1) Blasting promotes the increase of radon concentration, while forced ventilation accelerates radon transport. (2) The airflow field along the axis is divided into a vortex distribution zone, a vortex influence zone and stable regions. (3) The radon transport includes both migration and diffusion processes based on forced ventilation. (4) The radon concentration decreases with the increase of height, while exhibits low concentration in the middle and high concentration on both sides at the same height. (5) Compared with forced ventilation, the combined ventilation can improve the ventilation efficiency and shorten the radon transport time. The research results can provide a scientific basis for the safety analysis and evaluation of deep engineering environment.
期刊介绍:
The Journal of Environmental Radioactivity provides a coherent international forum for publication of original research or review papers on any aspect of the occurrence of radioactivity in natural systems.
Relevant subject areas range from applications of environmental radionuclides as mechanistic or timescale tracers of natural processes to assessments of the radioecological or radiological effects of ambient radioactivity. Papers deal with naturally occurring nuclides or with those created and released by man through nuclear weapons manufacture and testing, energy production, fuel-cycle technology, etc. Reports on radioactivity in the oceans, sediments, rivers, lakes, groundwaters, soils, atmosphere and all divisions of the biosphere are welcomed, but these should not simply be of a monitoring nature unless the data are particularly innovative.