Jing Luan , Fanlin Kong , Junhua Xu , Filipe Fernandes , Manuel Evaristo , Songtao Dong , Albano Cavaleiro , Hongbo Ju
{"title":"Deciphering the mechanical strengthening mechanism: Soft metal doping in ceramic matrices-A case study of TiN-Ag films","authors":"Jing Luan , Fanlin Kong , Junhua Xu , Filipe Fernandes , Manuel Evaristo , Songtao Dong , Albano Cavaleiro , Hongbo Ju","doi":"10.1016/j.matdes.2024.113489","DOIUrl":null,"url":null,"abstract":"<div><div>Soft metals have been widely added into ceramic-based films for fully meeting the demanding requirements of green tribological applications. However, the resulting considerable increase of the mechanical strength by adding a soft metal below 5 at.%, which reversed the rule-of-mixture, was still not fully revealed. In this paper, a case study of TiN-Ag films was carried out to investigate the strengthening mechanism induced by adding soft metal in TiN-Ag composite/multilayered films deposited by magnetron sputtering. The results showed that dual-phases of fcc-TiN and fcc-Ag co-existed in the composite films with the Ag particles embedded in the matrix. In some areas of the Ag particles, with a size below 4 nm, epitaxial growth with the TiN template was detected, which obliged the lattice to be distorted and shrunken. Consequently, both hardness and elastic modulus were enhanced from 21 and 236 GPa, for the reference TiN film, to 26 and 323 GPa for the TiN-Ag composite film with 2.4 at.% Ag. The possibility of having the epitaxial growth of Ag within TiN were also confirmed by designing a TiN/Ag multilayered film with an Ag layer thickness of ∼3 nm.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113489"},"PeriodicalIF":7.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008645","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soft metals have been widely added into ceramic-based films for fully meeting the demanding requirements of green tribological applications. However, the resulting considerable increase of the mechanical strength by adding a soft metal below 5 at.%, which reversed the rule-of-mixture, was still not fully revealed. In this paper, a case study of TiN-Ag films was carried out to investigate the strengthening mechanism induced by adding soft metal in TiN-Ag composite/multilayered films deposited by magnetron sputtering. The results showed that dual-phases of fcc-TiN and fcc-Ag co-existed in the composite films with the Ag particles embedded in the matrix. In some areas of the Ag particles, with a size below 4 nm, epitaxial growth with the TiN template was detected, which obliged the lattice to be distorted and shrunken. Consequently, both hardness and elastic modulus were enhanced from 21 and 236 GPa, for the reference TiN film, to 26 and 323 GPa for the TiN-Ag composite film with 2.4 at.% Ag. The possibility of having the epitaxial growth of Ag within TiN were also confirmed by designing a TiN/Ag multilayered film with an Ag layer thickness of ∼3 nm.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.