{"title":"An ensemble learning algorithm for optimization of spark ignition engine performance fuelled with methane/hydrogen blends","authors":"Mohammad-H. Tayarani-N. , Amin Paykani","doi":"10.1016/j.asoc.2024.112468","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing global demand for sustainable and cleaner transportation has led to extensive research on alternative fuels for Internal Combustion (IC) engines. One promising option is the utilization of methane/hydrogen blends in Spark-Ignition (SI) engines due to their potential to reduce Green House Gas (GHG) emissions and improve engine performance. However, the optimal operation of such an engine is challenging due to the interdependence of multiple conflicting objectives, including Brake Mean Effective Pressure (BMEP), Brake Specific Fuel Consumption (BSFC), and nitrogen oxide (NO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>) emissions. This paper proposes an evolutionary optimization algorithm that employs a surrogate model as a fitness function to optimize methane/hydrogen SI engine performance and emissions. To create the surrogate model, we propose a novel ensemble learning algorithm that consists of several base learners. This paper employs ten different learning algorithms diversified via the Wagging method to create a pool of base-learner algorithms. This paper proposes a combinatorial evolutionary pruning algorithm to select an optimal subset of learning algorithms from a pool of base learners for the final ensemble algorithm. Once the base learners are designed, they are incorporated into an ensemble, where their outputs are aggregated using a weighted voting scheme. The weights of these base learners are optimized through a gradient descent algorithm. However, when optimizing a problem using surrogate models, the fitness function is subject to approximation uncertainty. To address this issue, this paper introduces an uncertainty reduction algorithm that performs averaging within a sphere around each solution. Experiments are performed to compare the proposed ensemble learning algorithm to the classical learning algorithms and state-of-the-art ensemble algorithms. Also, the proposed smoothing algorithm is compared with the state-of-the-art evolutionary algorithms. Experimental studies suggest that the proposed algorithms outperform the existing algorithms.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"168 ","pages":"Article 112468"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624012420","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing global demand for sustainable and cleaner transportation has led to extensive research on alternative fuels for Internal Combustion (IC) engines. One promising option is the utilization of methane/hydrogen blends in Spark-Ignition (SI) engines due to their potential to reduce Green House Gas (GHG) emissions and improve engine performance. However, the optimal operation of such an engine is challenging due to the interdependence of multiple conflicting objectives, including Brake Mean Effective Pressure (BMEP), Brake Specific Fuel Consumption (BSFC), and nitrogen oxide (NO) emissions. This paper proposes an evolutionary optimization algorithm that employs a surrogate model as a fitness function to optimize methane/hydrogen SI engine performance and emissions. To create the surrogate model, we propose a novel ensemble learning algorithm that consists of several base learners. This paper employs ten different learning algorithms diversified via the Wagging method to create a pool of base-learner algorithms. This paper proposes a combinatorial evolutionary pruning algorithm to select an optimal subset of learning algorithms from a pool of base learners for the final ensemble algorithm. Once the base learners are designed, they are incorporated into an ensemble, where their outputs are aggregated using a weighted voting scheme. The weights of these base learners are optimized through a gradient descent algorithm. However, when optimizing a problem using surrogate models, the fitness function is subject to approximation uncertainty. To address this issue, this paper introduces an uncertainty reduction algorithm that performs averaging within a sphere around each solution. Experiments are performed to compare the proposed ensemble learning algorithm to the classical learning algorithms and state-of-the-art ensemble algorithms. Also, the proposed smoothing algorithm is compared with the state-of-the-art evolutionary algorithms. Experimental studies suggest that the proposed algorithms outperform the existing algorithms.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.