Competitive adsorption of two phenolic pollutants compounds using a novel biosorbent: Analytics (HPLC), Statistical (experimental design), and theoretical studies (DFT)

IF 4.9 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Taoufiq Bouzid , Aicha Naboulsi , Abdelali Grich , Hicham Yazid , Julien Vieillard , Abdelmajid Regti , Mamoune El Himri , Mohammadine El Haddad
{"title":"Competitive adsorption of two phenolic pollutants compounds using a novel biosorbent: Analytics (HPLC), Statistical (experimental design), and theoretical studies (DFT)","authors":"Taoufiq Bouzid ,&nbsp;Aicha Naboulsi ,&nbsp;Abdelali Grich ,&nbsp;Hicham Yazid ,&nbsp;Julien Vieillard ,&nbsp;Abdelmajid Regti ,&nbsp;Mamoune El Himri ,&nbsp;Mohammadine El Haddad","doi":"10.1016/j.microc.2024.112281","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we focused on a novel agricultural waste material, specifically a plant known as Nicotiana glauca Graham (NgG), which is highly abundant in Morocco. The investigation involved testing four activating agents H<sub>3</sub>PO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub>, NaOH, and ZnCl<sub>2</sub> on Nicotiana glauca Graham (NgG) to assess their effects. By employing an experimental design, we successfully determined the optimal conditions for this activation process. The resulting activated carbon was then evaluated for its effectiveness in removing two phenolic pollutants, Bisphenol A (BPA) and β-naphthol (BNL). Analysis using FTIR revealed various functional groups on the activated carbon surface, including P = O, P-O-C aromatics, and O-H groups, which played a crucial role in the adsorption of BPA and BNL. XRD analysis indicated that the optimal adsorbent was amorphous, while Zeta potential measurements showed a significant decrease in pollutant removal rates after reaching a pH level of nearly 10. The activated carbon produced from H<sub>3</sub>PO<sub>4</sub> exhibited a surface area of 1078 m<sup>2</sup>/g. Experimental adsorption results at the highest removal rate showed q<sub>BPAs</sub> = 125.82 mg/g for BPA and q<sub>BNLs</sub> = 62.82 mg/g for BNL in individual mode, while in the mixed mode, q<sub>BPAm</sub> = 16.22 mg/g for BPA and q<sub>BNLm</sub> = 16.04 mg/g for BNL were observed. To enhance our study, we utilized Density Functional Theory (DFT) calculations to identify the most electrophilic and nucleophilic regions on BPA and BNL. The analysis highlighted the hydroxyl groups (–OH) of BNL and BPA as the most significant negative zones, crucial for understanding the underlying mechanisms and explaining the experimental observations. In the isotherm analysis, we identified the Temkin model in a singular mode and the Langmuir model in a mixture mode, showcasing a notable distinction between the two modes.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"208 ","pages":"Article 112281"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X24023932","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we focused on a novel agricultural waste material, specifically a plant known as Nicotiana glauca Graham (NgG), which is highly abundant in Morocco. The investigation involved testing four activating agents H3PO4, H2SO4, NaOH, and ZnCl2 on Nicotiana glauca Graham (NgG) to assess their effects. By employing an experimental design, we successfully determined the optimal conditions for this activation process. The resulting activated carbon was then evaluated for its effectiveness in removing two phenolic pollutants, Bisphenol A (BPA) and β-naphthol (BNL). Analysis using FTIR revealed various functional groups on the activated carbon surface, including P = O, P-O-C aromatics, and O-H groups, which played a crucial role in the adsorption of BPA and BNL. XRD analysis indicated that the optimal adsorbent was amorphous, while Zeta potential measurements showed a significant decrease in pollutant removal rates after reaching a pH level of nearly 10. The activated carbon produced from H3PO4 exhibited a surface area of 1078 m2/g. Experimental adsorption results at the highest removal rate showed qBPAs = 125.82 mg/g for BPA and qBNLs = 62.82 mg/g for BNL in individual mode, while in the mixed mode, qBPAm = 16.22 mg/g for BPA and qBNLm = 16.04 mg/g for BNL were observed. To enhance our study, we utilized Density Functional Theory (DFT) calculations to identify the most electrophilic and nucleophilic regions on BPA and BNL. The analysis highlighted the hydroxyl groups (–OH) of BNL and BPA as the most significant negative zones, crucial for understanding the underlying mechanisms and explaining the experimental observations. In the isotherm analysis, we identified the Temkin model in a singular mode and the Langmuir model in a mixture mode, showcasing a notable distinction between the two modes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchemical Journal
Microchemical Journal 化学-分析化学
CiteScore
8.70
自引率
8.30%
发文量
1131
审稿时长
1.9 months
期刊介绍: The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field. Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信