{"title":"Immobilizing calcium-dependent affinity ligand onto iron oxide nanoparticles for mild magnetic mAb separation","authors":"Ines Zimmermann , Friederike Eilts , Anna-Sophia Galler , Jonas Bayer , Sophia Hober , Sonja Berensmeier","doi":"10.1016/j.btre.2024.e00864","DOIUrl":null,"url":null,"abstract":"<div><div>Current downstream processing of monoclonal antibodies (mAbs) is limited in throughput and requires harsh pH conditions for mAb elution from Protein A affinity ligands. The use of an engineered calcium-dependent ligand (Z<sub>Ca</sub>) in magnetic separation applications promises improvements due to mild elution conditions, fast processability, and process integration prospects. In this work, we synthesized and evaluated three magnetic nanoparticle types immobilized with the cysteine-tagged ligand Z<sub>Ca</sub>-cys. Ligand homodimers were physically immobilized onto bare iron oxide nanoparticles (MNP) and MNP coated with tetraethyl orthosilicate (MNP@TEOS). In contrast, Z<sub>Ca</sub>-cys was covalently and more site-directedly immobilized onto MNP coated with (3-glycidyloxypropyl)trimethoxysilane (MNP@GPTMS) via a preferential cysteine-mediated epoxy ring opening reaction. Both coated MNP showed suitable characteristics, with MNP@TEOS@Z<sub>Ca</sub>-cys demonstrating larger immunoglobulin G (IgG) capacity (196 mg <em>g</em><sup>−1</sup>) and the GPTMS-coated particles showing faster magnetic attraction and higher IgG recovery (88 %). The particles pave the way for the development of calcium-dependent magnetic separation processes.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00864"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X24000377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
Current downstream processing of monoclonal antibodies (mAbs) is limited in throughput and requires harsh pH conditions for mAb elution from Protein A affinity ligands. The use of an engineered calcium-dependent ligand (ZCa) in magnetic separation applications promises improvements due to mild elution conditions, fast processability, and process integration prospects. In this work, we synthesized and evaluated three magnetic nanoparticle types immobilized with the cysteine-tagged ligand ZCa-cys. Ligand homodimers were physically immobilized onto bare iron oxide nanoparticles (MNP) and MNP coated with tetraethyl orthosilicate (MNP@TEOS). In contrast, ZCa-cys was covalently and more site-directedly immobilized onto MNP coated with (3-glycidyloxypropyl)trimethoxysilane (MNP@GPTMS) via a preferential cysteine-mediated epoxy ring opening reaction. Both coated MNP showed suitable characteristics, with MNP@TEOS@ZCa-cys demonstrating larger immunoglobulin G (IgG) capacity (196 mg g−1) and the GPTMS-coated particles showing faster magnetic attraction and higher IgG recovery (88 %). The particles pave the way for the development of calcium-dependent magnetic separation processes.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.