{"title":"PyPSA-BD: A customized model to explore decarbonized energy transition for developing country","authors":"Firuz Ahamed Nahid , Joyashree Roy","doi":"10.1016/j.ref.2024.100655","DOIUrl":null,"url":null,"abstract":"<div><div>This article provides high-resolution, evidence-based insights towards power sector planning for a developing country. We consider the PyPSA-BD model as a cutting-edge contribution as it’s a fully customized adaptation of PyPSA-Earth for Bangladesh to identify challenges and opportunities for transitioning to a decarbonized power system through counterfactual validation of inputs from national official statistics with a spatial resolution of 30km x 30km and an hourly temporal resolution. Its open-source framework is helpful for future researchers and decision-makers in developing countries like Bangladesh to develop more scenarios to answer any policy-relevant questions as per national need. With 2019 as a reference year, scenarios for 2030, 2041, and 2050 align with national renewable energy integration and decarbonization targets revealing cost-effective generation expansions, diversification of installed capacity through renewable energy penetration, net employment generation, additional land and investment requirement. Model results show that the 2019 installed capacity of 18.94 GW will grow to 61.45 GW by 2030, 102.36 GW by 2041, and 281.52 GW by 2050. By 2050, a storage capacity of 28.5 GW will be required to maintain grid stability. This transition could create approximately 6.7 million jobs and reduce generation costs to 7.63 BDT/kWh by 2050, requiring 3690.85 sq.km of land. Achieving these outcomes will demand an annual investment of approximately 1.99% of Bangladesh’s 2023 GDP from 2025, underscoring the need for national and international finance mobilization. The results guide policymakers to develop sustainable energy transition strategies for Bangladesh that provide power supply security at both spatial and temporal scale.</div></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":"52 ","pages":"Article 100655"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755008424001194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This article provides high-resolution, evidence-based insights towards power sector planning for a developing country. We consider the PyPSA-BD model as a cutting-edge contribution as it’s a fully customized adaptation of PyPSA-Earth for Bangladesh to identify challenges and opportunities for transitioning to a decarbonized power system through counterfactual validation of inputs from national official statistics with a spatial resolution of 30km x 30km and an hourly temporal resolution. Its open-source framework is helpful for future researchers and decision-makers in developing countries like Bangladesh to develop more scenarios to answer any policy-relevant questions as per national need. With 2019 as a reference year, scenarios for 2030, 2041, and 2050 align with national renewable energy integration and decarbonization targets revealing cost-effective generation expansions, diversification of installed capacity through renewable energy penetration, net employment generation, additional land and investment requirement. Model results show that the 2019 installed capacity of 18.94 GW will grow to 61.45 GW by 2030, 102.36 GW by 2041, and 281.52 GW by 2050. By 2050, a storage capacity of 28.5 GW will be required to maintain grid stability. This transition could create approximately 6.7 million jobs and reduce generation costs to 7.63 BDT/kWh by 2050, requiring 3690.85 sq.km of land. Achieving these outcomes will demand an annual investment of approximately 1.99% of Bangladesh’s 2023 GDP from 2025, underscoring the need for national and international finance mobilization. The results guide policymakers to develop sustainable energy transition strategies for Bangladesh that provide power supply security at both spatial and temporal scale.