{"title":"“Heat transfer analysis in 10 PPI copper metal foam using graphene-water nanofluid: Experimental study”","authors":"Swapnil Belorkar, Shrikant Londhe","doi":"10.1016/j.ijthermalsci.2024.109574","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal management of the modern electronic devices is one of the critical areas where innovative approaches are explored that include cooling using liquid, phase change materials, and employing microchannels, and porous metal foams along with the use of nanofluid. There are numerous analytical and simulation studies along with few experimental studies that used different water-nanoparticles (viz., CuO, Al<sub>2</sub>O and TiO<sub>2</sub>) combinations to flow through the metal foam to enhance the heat transfer. However, the use of Graphene-H<sub>2</sub>O nanofluid along with porous metal foam is not much explored. This study investigates the thermal performance and hydraulic features of Graphene-H<sub>2</sub>O nanofluid since it has some unique thermal characteristics which differentiate it from other nanofluids. Further, slightly wider range of Reynolds number is addressed which extends from 300 to 1900, as against up to 1200 in the earlier studies. The volumetric concentrations (φ) of Graphene are varied from 0.1 % to 0.5 %. The investigation is carried out for a cavity that contains copper metal lattice porous structure having 95 % porosity and 10 PPI pore density. The parameters addressed include heat transfer coefficient, Nusselt number, average wall temperature of metal foam, pressure drop & friction coefficient. The results revealed that the heat transfer coefficient increases with concentration of nanofluid and for 0.5 % concentration, it increases 3.81 times and 6.89 times, respectively, for Re = 315 and Re = 1895, when compared with that for plain distilled water. The corresponding significant reduction in the heat sink temperature to the tune of 10.67 % and 13.10 % is observed, respectively, for Re = 315 & Re = 1785.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"210 ","pages":"Article 109574"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924006963","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal management of the modern electronic devices is one of the critical areas where innovative approaches are explored that include cooling using liquid, phase change materials, and employing microchannels, and porous metal foams along with the use of nanofluid. There are numerous analytical and simulation studies along with few experimental studies that used different water-nanoparticles (viz., CuO, Al2O and TiO2) combinations to flow through the metal foam to enhance the heat transfer. However, the use of Graphene-H2O nanofluid along with porous metal foam is not much explored. This study investigates the thermal performance and hydraulic features of Graphene-H2O nanofluid since it has some unique thermal characteristics which differentiate it from other nanofluids. Further, slightly wider range of Reynolds number is addressed which extends from 300 to 1900, as against up to 1200 in the earlier studies. The volumetric concentrations (φ) of Graphene are varied from 0.1 % to 0.5 %. The investigation is carried out for a cavity that contains copper metal lattice porous structure having 95 % porosity and 10 PPI pore density. The parameters addressed include heat transfer coefficient, Nusselt number, average wall temperature of metal foam, pressure drop & friction coefficient. The results revealed that the heat transfer coefficient increases with concentration of nanofluid and for 0.5 % concentration, it increases 3.81 times and 6.89 times, respectively, for Re = 315 and Re = 1895, when compared with that for plain distilled water. The corresponding significant reduction in the heat sink temperature to the tune of 10.67 % and 13.10 % is observed, respectively, for Re = 315 & Re = 1785.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.