Stepan A. Mikhailenko , Bernardo Buonomo , Oronzio Manca , Mikhail A. Sheremet
{"title":"Convective-radiative heat exchange in a cube with a flat heated element under the rotation effect around coordinate axis","authors":"Stepan A. Mikhailenko , Bernardo Buonomo , Oronzio Manca , Mikhail A. Sheremet","doi":"10.1016/j.ijthermalsci.2024.109577","DOIUrl":null,"url":null,"abstract":"<div><div>The production of a various engineering systems is accompanied by studies of liquid flow structures and thermal energy patterns. Many engineering systems in electronics and energy are affected by rotation and an important task becomes the description of physical phenomena under rotational effects. This investigation is dedicated to convective-radiative thermal and mass transport inside a rotating cube having a flat heated element placed on the bottom surface. The rotation of the cube around each of the axes of Cartesian coordinates has been considered. Governing equations based on mass, momentum and energy conservation laws are written employing the non-primitive variables. The set of control equations is resolved by the finite difference schemes. The influences of angular velocity, rotation axis orientation, and emissivity of surfaces on the intensity of heat transfer have been shown. Temperature patterns for various rotation angles are presented and described in detail. The results demonstrate that rotation around the vertical axis shows a steady-state of the Nusselt numbers, while rotation around the horizontal axis shows the periodic changes. It is interesting that similar heat exchange modes are formed during rotation around horizontal axes. More intensive convective and radiative heat exchange is observed in the case of rotation around an axis at which the cooling walls change their position.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"210 ","pages":"Article 109577"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924006999","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The production of a various engineering systems is accompanied by studies of liquid flow structures and thermal energy patterns. Many engineering systems in electronics and energy are affected by rotation and an important task becomes the description of physical phenomena under rotational effects. This investigation is dedicated to convective-radiative thermal and mass transport inside a rotating cube having a flat heated element placed on the bottom surface. The rotation of the cube around each of the axes of Cartesian coordinates has been considered. Governing equations based on mass, momentum and energy conservation laws are written employing the non-primitive variables. The set of control equations is resolved by the finite difference schemes. The influences of angular velocity, rotation axis orientation, and emissivity of surfaces on the intensity of heat transfer have been shown. Temperature patterns for various rotation angles are presented and described in detail. The results demonstrate that rotation around the vertical axis shows a steady-state of the Nusselt numbers, while rotation around the horizontal axis shows the periodic changes. It is interesting that similar heat exchange modes are formed during rotation around horizontal axes. More intensive convective and radiative heat exchange is observed in the case of rotation around an axis at which the cooling walls change their position.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.