From quorum sensing inhibition to antimicrobial defense: The dual role of eugenol-gold nanoparticles against carbapenem-resistant Pseudomonas aeruginosa
Huale Chen , Panjie Hu , Yaran Wang , Haifeng Liu , Junyuan Zheng , Zeyu Huang , Xiaotuan Zhang , Yong Liu , Tieli Zhou
{"title":"From quorum sensing inhibition to antimicrobial defense: The dual role of eugenol-gold nanoparticles against carbapenem-resistant Pseudomonas aeruginosa","authors":"Huale Chen , Panjie Hu , Yaran Wang , Haifeng Liu , Junyuan Zheng , Zeyu Huang , Xiaotuan Zhang , Yong Liu , Tieli Zhou","doi":"10.1016/j.colsurfb.2024.114415","DOIUrl":null,"url":null,"abstract":"<div><div>To address the pressing challenge of antibiotic resistance, particularly the robust defense mechanisms of <em>Pseudomonas aeruginosa</em> (<em>P. aeruginosa</em>) against conventional antibiotics, this study employs nanotechnology to enhance antimicrobial efficacy while ensuring good biocompatibility with the host. In this study, gold nanoparticles were chemically decorated with eugenol, a phenol-rich natural compound, using a one-pot synthesis method. The successful synthesis and functionalization of eugenol-decorated gold nanoparticles (Eugenol_Au NPs) were validated by comprehensive physicochemical analyses, demonstrating their stability and biocompatibility. These nanoparticles exhibited potent antimicrobial activity against both planktonic and biofilm-embedded carbapenem-resistant <em>P. aeruginosa</em> strains. Eugenol_Au NPs disrupted the bacterial quorum sensing system and stimulated intracellular reactive oxygen species production, which enhance their antibacterial effects. This dual mechanism of action has promising clinical implications for the treatment of infections associated with antibiotic-resistant <em>P. aeruginosa</em>. <em>In vivo</em> assessments in a murine peritoneal infection model showed that Eugenol_Au NPs significantly reduced bacterial loads and mitigated inflammatory responses, thereby improving survival rates. The study highlights the potential of Eugenol_Au NPs as an alternative strategy for refractory infections caused by carbapenem-resistant <em>P. aeruginosa</em>, and underscores the feasibility and promise of further clinical research and development of new therapeutic approaches targeting this resistant pathogen.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"247 ","pages":"Article 114415"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092777652400674X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
To address the pressing challenge of antibiotic resistance, particularly the robust defense mechanisms of Pseudomonas aeruginosa (P. aeruginosa) against conventional antibiotics, this study employs nanotechnology to enhance antimicrobial efficacy while ensuring good biocompatibility with the host. In this study, gold nanoparticles were chemically decorated with eugenol, a phenol-rich natural compound, using a one-pot synthesis method. The successful synthesis and functionalization of eugenol-decorated gold nanoparticles (Eugenol_Au NPs) were validated by comprehensive physicochemical analyses, demonstrating their stability and biocompatibility. These nanoparticles exhibited potent antimicrobial activity against both planktonic and biofilm-embedded carbapenem-resistant P. aeruginosa strains. Eugenol_Au NPs disrupted the bacterial quorum sensing system and stimulated intracellular reactive oxygen species production, which enhance their antibacterial effects. This dual mechanism of action has promising clinical implications for the treatment of infections associated with antibiotic-resistant P. aeruginosa. In vivo assessments in a murine peritoneal infection model showed that Eugenol_Au NPs significantly reduced bacterial loads and mitigated inflammatory responses, thereby improving survival rates. The study highlights the potential of Eugenol_Au NPs as an alternative strategy for refractory infections caused by carbapenem-resistant P. aeruginosa, and underscores the feasibility and promise of further clinical research and development of new therapeutic approaches targeting this resistant pathogen.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.