Mojtaba Gorji Azandariani , Ali Parvari , Arvin Yaghmouri , Mehdi Vajdian
{"title":"Experimental and numerical study of hysteresis behavior of innovative hybrid steel-timber shear wall system","authors":"Mojtaba Gorji Azandariani , Ali Parvari , Arvin Yaghmouri , Mehdi Vajdian","doi":"10.1016/j.tws.2024.112743","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents hybrid steel-timber shear walls (HSTSWs) as an environmentally friendly and structurally efficient system. The HSTSW system provides quick and easy interchangeability of the timber components, making it adjustable and adaptable to different design needs throughout the building's lifecycle. Additionally, the incorporation of timber elements into the steel frame contributes to lateral resistance while offering an eco-friendly alternative to materials such as steel and concrete. This research includes experimental studies and numerical simulations using finite element analysis to investigate and comprehensively compare the hysteresis behavior of HSTSW and SPSW. The hysteresis behavior, ultimate load, failure modes, energy dissipation mechanisms, ultimate displacement, weight-related characteristics, and efficiency of load-carrying capacity are analyzed for both HSTSW and SPSW specimens. Comparative results with SPSW indicate that HSTSW exhibit a slightly higher ultimate load-carrying capacity and significantly greater ultimate deformation capacity. The cyclic behavior and failure modes of both systems are detailed, emphasizing the trade-off between strength and ductility in HSTSWs. Stiffness, ductility, absorbed energy, and equivalent viscous damping ratio are assessed, revealing that HSTSW absorb more energy with higher specific absorbed energy and exhibit comparable damping behavior to SPSW. Additionally, numerical modeling is employed to simulate the response of SPSW and HSTSW, and a validation process is conducted to compare numerical and experimental outcomes.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"208 ","pages":"Article 112743"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124011832","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This research presents hybrid steel-timber shear walls (HSTSWs) as an environmentally friendly and structurally efficient system. The HSTSW system provides quick and easy interchangeability of the timber components, making it adjustable and adaptable to different design needs throughout the building's lifecycle. Additionally, the incorporation of timber elements into the steel frame contributes to lateral resistance while offering an eco-friendly alternative to materials such as steel and concrete. This research includes experimental studies and numerical simulations using finite element analysis to investigate and comprehensively compare the hysteresis behavior of HSTSW and SPSW. The hysteresis behavior, ultimate load, failure modes, energy dissipation mechanisms, ultimate displacement, weight-related characteristics, and efficiency of load-carrying capacity are analyzed for both HSTSW and SPSW specimens. Comparative results with SPSW indicate that HSTSW exhibit a slightly higher ultimate load-carrying capacity and significantly greater ultimate deformation capacity. The cyclic behavior and failure modes of both systems are detailed, emphasizing the trade-off between strength and ductility in HSTSWs. Stiffness, ductility, absorbed energy, and equivalent viscous damping ratio are assessed, revealing that HSTSW absorb more energy with higher specific absorbed energy and exhibit comparable damping behavior to SPSW. Additionally, numerical modeling is employed to simulate the response of SPSW and HSTSW, and a validation process is conducted to compare numerical and experimental outcomes.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.