Experimental and numerical investigation of energy absorption in honeycomb structures based on lozenge grid unit cells under various loading angles

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Hussain Gharehbaghi , Maryam Jamshidi , Abdulla Almomani
{"title":"Experimental and numerical investigation of energy absorption in honeycomb structures based on lozenge grid unit cells under various loading angles","authors":"Hussain Gharehbaghi ,&nbsp;Maryam Jamshidi ,&nbsp;Abdulla Almomani","doi":"10.1016/j.jcomc.2024.100546","DOIUrl":null,"url":null,"abstract":"<div><div>The present study aims to numerically and experimentally analyze the energy absorption characteristics of honeycomb structures using Lozenge grid unit cells made from continuous glass fibers reinforced polylactic acid (PLA). The design and load-bearing capability of the Lozenge grid was also examined under different orientations angles. The composite grids were also subjected to heat treatment after the tests, at 70 °C, in order to measure its effect on the energy absorption capacity. The Lozenge grid specimens were additively manufactured using fused filament fabrication. The mechanical properties and failure models were described using the VUSDFLD subroutine in order to simulate the Lozenge structure under quasi-static compressive load. The results revealed a good correlation between the numerical and the experimental values. Moreover, Lozenge grid unit cells based structures at 0 or 90° was found with the highest energy absorption capacity. Meanwhile, the least energy absorption was seen at 45°. Overall, the structures had much higher energy absorption capacity at angles closer to 0 and 90°. Outcomes from this work is aimed toward understanding the damage tolerance of Lozenge lattices, and hence the reliability of such new emerging lightweight structures.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100546"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024001154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The present study aims to numerically and experimentally analyze the energy absorption characteristics of honeycomb structures using Lozenge grid unit cells made from continuous glass fibers reinforced polylactic acid (PLA). The design and load-bearing capability of the Lozenge grid was also examined under different orientations angles. The composite grids were also subjected to heat treatment after the tests, at 70 °C, in order to measure its effect on the energy absorption capacity. The Lozenge grid specimens were additively manufactured using fused filament fabrication. The mechanical properties and failure models were described using the VUSDFLD subroutine in order to simulate the Lozenge structure under quasi-static compressive load. The results revealed a good correlation between the numerical and the experimental values. Moreover, Lozenge grid unit cells based structures at 0 or 90° was found with the highest energy absorption capacity. Meanwhile, the least energy absorption was seen at 45°. Overall, the structures had much higher energy absorption capacity at angles closer to 0 and 90°. Outcomes from this work is aimed toward understanding the damage tolerance of Lozenge lattices, and hence the reliability of such new emerging lightweight structures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信