Hao Fan , Haibo Long , Junbo Zhao , Xiaoyi Yuan , Yunsong Zhao , Yinong Liu , Shengcheng Mao , Lihua Wang , Ze Zhang , Xiaodong Han
{"title":"Effect of γ′ size on the high-temperature low-stress creep of nickel-based single-crystal superalloys","authors":"Hao Fan , Haibo Long , Junbo Zhao , Xiaoyi Yuan , Yunsong Zhao , Yinong Liu , Shengcheng Mao , Lihua Wang , Ze Zhang , Xiaodong Han","doi":"10.1016/j.msea.2024.147603","DOIUrl":null,"url":null,"abstract":"<div><div>Nickel-based single crystal superalloys exhibit excellent high temperature mechanical properties due to their unique γ′-γ dual phase microstructure. Microstructure design is the major strategy for increasing their properties. However, the design strategy for the size of the γ′ phase is still lacking. This work investigates the effect of γ′ cuboid size on the creep-rupture life of nickel-based single crystal superalloys via a comparative experiment of two alloys of similar γ′ phase volume fractions and different elemental compositions. The alloy with smaller γ′ phase cuboids exhibits a creep-rupture life twice as long as the alloy with an average cuboid size 30 % larger. In addition, a smaller average γ′ phase cuboid size also contributes to a lower density of the dislocations, a smaller spacing of the raft and lower content of the topologically closed packed phases. The reasons behind these different mechanical properties and microstructures are discussed.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"921 ","pages":"Article 147603"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092150932401534X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nickel-based single crystal superalloys exhibit excellent high temperature mechanical properties due to their unique γ′-γ dual phase microstructure. Microstructure design is the major strategy for increasing their properties. However, the design strategy for the size of the γ′ phase is still lacking. This work investigates the effect of γ′ cuboid size on the creep-rupture life of nickel-based single crystal superalloys via a comparative experiment of two alloys of similar γ′ phase volume fractions and different elemental compositions. The alloy with smaller γ′ phase cuboids exhibits a creep-rupture life twice as long as the alloy with an average cuboid size 30 % larger. In addition, a smaller average γ′ phase cuboid size also contributes to a lower density of the dislocations, a smaller spacing of the raft and lower content of the topologically closed packed phases. The reasons behind these different mechanical properties and microstructures are discussed.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.