Potassium storage behavior and low-temperature performance of typical carbon anodes in potassium-ion hybrid capacitors enabled by Co-intercalation graphite chemistry

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hongfei Zhang , Jinhui Zhao , Chongchong Ren , Stephen King , Hongtao Sun , Xin Zhang , Gongkai Wang
{"title":"Potassium storage behavior and low-temperature performance of typical carbon anodes in potassium-ion hybrid capacitors enabled by Co-intercalation graphite chemistry","authors":"Hongfei Zhang ,&nbsp;Jinhui Zhao ,&nbsp;Chongchong Ren ,&nbsp;Stephen King ,&nbsp;Hongtao Sun ,&nbsp;Xin Zhang ,&nbsp;Gongkai Wang","doi":"10.1016/j.carbon.2024.119868","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon materials are widely explored as anodes for potassium-ion storage, yet the slow K<sup>+</sup> desolvation process in electrolyte at low temperatures presents a kinetic limitation that impedes reliable operation in specific conditions. In this work, we systematically investigate the potassium storage behavior of four typical carbon materials—graphite, hard carbon, activated carbon, and graphene—in a 1 M KFSI-Diglyme electrolyte, highlighting a co-intercalation approach that significantly reduces the desolvation energy barrier. The formation of ternary graphite intercalation compounds (<em>t</em>-GICs) through co-intercalation in graphite introduces weak interlayer interactions between the graphite layers and solvated K<sup>+</sup>, which accelerate K<sup>+</sup> diffusion in the anode, thereby enhancing reaction kinetics. This unique mechanism enables the graphite anode to deliver remarkable rate performance (98 mAh g<sup>−1</sup> at 0.05 A g<sup>−1</sup> and 76 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>) even at −20 °C. Furthermore, potassium-ion hybrid capacitors (PICs) using the graphite anode achieve impressive cycling stability, with 88 % capacity retention after 2000 cycles at 2 A g<sup>−1</sup> and a high power density of 11.1 kW kg<sup>−1</sup> (57 Wh kg<sup>−1</sup>) at −20 °C. These findings provide key insights into the design of robust potassium-ion storage devices capable of sustaining high performance in low-temperature environments.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"233 ","pages":"Article 119868"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000862232401087X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon materials are widely explored as anodes for potassium-ion storage, yet the slow K+ desolvation process in electrolyte at low temperatures presents a kinetic limitation that impedes reliable operation in specific conditions. In this work, we systematically investigate the potassium storage behavior of four typical carbon materials—graphite, hard carbon, activated carbon, and graphene—in a 1 M KFSI-Diglyme electrolyte, highlighting a co-intercalation approach that significantly reduces the desolvation energy barrier. The formation of ternary graphite intercalation compounds (t-GICs) through co-intercalation in graphite introduces weak interlayer interactions between the graphite layers and solvated K+, which accelerate K+ diffusion in the anode, thereby enhancing reaction kinetics. This unique mechanism enables the graphite anode to deliver remarkable rate performance (98 mAh g−1 at 0.05 A g−1 and 76 mAh g−1 at 1 A g−1) even at −20 °C. Furthermore, potassium-ion hybrid capacitors (PICs) using the graphite anode achieve impressive cycling stability, with 88 % capacity retention after 2000 cycles at 2 A g−1 and a high power density of 11.1 kW kg−1 (57 Wh kg−1) at −20 °C. These findings provide key insights into the design of robust potassium-ion storage devices capable of sustaining high performance in low-temperature environments.

Abstract Image

石墨化学共插层钾离子杂化电容器中典型碳阳极的储钾行为和低温性能
碳材料作为钾离子储存的阳极被广泛探索,但在低温下电解质中缓慢的K+脱溶过程存在动力学限制,阻碍了在特定条件下的可靠运行。在这项工作中,我们系统地研究了四种典型的碳材料——石墨、硬碳、活性炭和石墨烯——在1 M KFSI-Diglyme电解质中的钾储存行为,强调了一种显著降低脱溶能垒的共插层方法。通过石墨共插层形成三元石墨插层化合物(t-GICs),石墨层与溶剂化K+之间产生弱的层间相互作用,加速K+在阳极中的扩散,从而提高反应动力学。这种独特的机制使石墨阳极即使在- 20°C下也能提供显着的倍率性能(0.05 A g−1时98 mAh g−1,1 A g−1时76 mAh g−1)。此外,使用石墨阳极的钾离子混合电容器(PICs)实现了令人印象深刻的循环稳定性,在2 A g - 1下循环2000次后,其容量保持率为88%,在- 20°C下的高功率密度为11.1 kW kg - 1 (57 Wh kg - 1)。这些发现为设计能够在低温环境中保持高性能的坚固的钾离子存储装置提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信