Two-step graph propagation for incomplete multi-view clustering

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiao Zhang , Xinyu Pu , Hangjun Che , Cheng Liu , Jun Qin
{"title":"Two-step graph propagation for incomplete multi-view clustering","authors":"Xiao Zhang ,&nbsp;Xinyu Pu ,&nbsp;Hangjun Che ,&nbsp;Cheng Liu ,&nbsp;Jun Qin","doi":"10.1016/j.neunet.2024.106944","DOIUrl":null,"url":null,"abstract":"<div><div>Incomplete multi-view clustering addresses scenarios where data completeness cannot be guaranteed, diverging from traditional methods that assume fully observed features. Existing approaches often overlook high-order correlations present in multiple similarity graphs, and suffer from inefficiencies due to iterative optimization procedures. To overcome these limitations, we propose a graph-based model leveraging graph propagation to effectively handle incomplete data. The proposed method translates incomplete instances into incomplete graphs, and infers missing entries through a graph propagation strategy, ensuring the inferred data is meaningful and contextually relevant. Specifically, a self-guided graph is constructed to capture global relationships, while partial graphs represent view-specific similarities. The self-guided graph is first completed through self-guided graph propagation, which subsequently aids in the propagation of the partial graphs. The key contribution of graph propagation is to propagate information from complete data to incomplete data. Furthermore, the high-order correlation across multiple views is captured by low-rank tensor learning. To enhance computational efficiency, the optimization procedure is decoupled and implemented in a stepwise manner, eliminating the need for iterative updates. Extensive experiments validate the robustness of the proposed method, demonstrating superior performance compared to state-of-the-art methods, even when all instances are incomplete.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"Article 106944"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024008736","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Incomplete multi-view clustering addresses scenarios where data completeness cannot be guaranteed, diverging from traditional methods that assume fully observed features. Existing approaches often overlook high-order correlations present in multiple similarity graphs, and suffer from inefficiencies due to iterative optimization procedures. To overcome these limitations, we propose a graph-based model leveraging graph propagation to effectively handle incomplete data. The proposed method translates incomplete instances into incomplete graphs, and infers missing entries through a graph propagation strategy, ensuring the inferred data is meaningful and contextually relevant. Specifically, a self-guided graph is constructed to capture global relationships, while partial graphs represent view-specific similarities. The self-guided graph is first completed through self-guided graph propagation, which subsequently aids in the propagation of the partial graphs. The key contribution of graph propagation is to propagate information from complete data to incomplete data. Furthermore, the high-order correlation across multiple views is captured by low-rank tensor learning. To enhance computational efficiency, the optimization procedure is decoupled and implemented in a stepwise manner, eliminating the need for iterative updates. Extensive experiments validate the robustness of the proposed method, demonstrating superior performance compared to state-of-the-art methods, even when all instances are incomplete.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信