Binarized Simplicial Convolutional Neural Networks

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yi Yan, Ercan Engin Kuruoglu
{"title":"Binarized Simplicial Convolutional Neural Networks","authors":"Yi Yan,&nbsp;Ercan Engin Kuruoglu","doi":"10.1016/j.neunet.2024.106928","DOIUrl":null,"url":null,"abstract":"<div><div>Graph Neural Networks have the limitation of processing features solely on graph nodes, neglecting data on high-dimensional structures such as edges and triangles. Simplicial Convolutional Neural Networks (SCNN) represent high-order structures using simplicial complexes to break this limitation but still lack time efficiency. In this paper, a novel neural network architecture named Binarized Simplicial Convolutional Neural Networks (Bi-SCNN) is proposed based on the combination of simplicial convolution with a weighted binary-sign forward propagation strategy. The utilization of the Hodge Laplacian on a weighted binary-sign forward propagation enables Bi-SCNN to efficiently and effectively represent simplicial features with higher-order structures, surpassing the capabilities of traditional graph node representations. The Bi-SCNN achieves reduced model complexity compared to previous SSCN variants through binarization and normalization, also serving as intrinsic nonlinearities of Bi-SCNN; this enables Bi-SCNN to shorten the execution time without compromising prediction performance and makes Bi-SCNN less prone to over-smoothing. Experimenting with real-world citation and ocean-drifter data confirmed that our proposed Bi-SCNN is efficient and accurate.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"Article 106928"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024008578","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Graph Neural Networks have the limitation of processing features solely on graph nodes, neglecting data on high-dimensional structures such as edges and triangles. Simplicial Convolutional Neural Networks (SCNN) represent high-order structures using simplicial complexes to break this limitation but still lack time efficiency. In this paper, a novel neural network architecture named Binarized Simplicial Convolutional Neural Networks (Bi-SCNN) is proposed based on the combination of simplicial convolution with a weighted binary-sign forward propagation strategy. The utilization of the Hodge Laplacian on a weighted binary-sign forward propagation enables Bi-SCNN to efficiently and effectively represent simplicial features with higher-order structures, surpassing the capabilities of traditional graph node representations. The Bi-SCNN achieves reduced model complexity compared to previous SSCN variants through binarization and normalization, also serving as intrinsic nonlinearities of Bi-SCNN; this enables Bi-SCNN to shorten the execution time without compromising prediction performance and makes Bi-SCNN less prone to over-smoothing. Experimenting with real-world citation and ocean-drifter data confirmed that our proposed Bi-SCNN is efficient and accurate.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信