{"title":"Logarithmic Bernstein functions for fractional Rosenau–Hyman equation with the Caputo–Hadamard derivative","authors":"M.H. Heydari , F. Heydari , O. Bavi , M. Bayram","doi":"10.1016/j.rinp.2024.108055","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the Caputo–Hadamard derivative is fittingly used to define a fractional form of the Rosenau–Hyman equation. To solve this equation, the orthonormal logarithmic Bernstein functions (BFs) are created as a suitable basis for handling this type of derivative. The primary benefit of these functions lies in the ease of computing their Hadamard fractional integral and derivative. These logarithmic functions, combined with the orthonormal Bernstein polynomials (BPs), are simultaneously employed to develop a hybrid strategy for solving the aforementioned equation. More precisely, the orthonormal logarithmic BFs are utilized to approximate the solution in the temporal domain and the orthonormal BPs are employed in the spatial domain. In addition, a matrix is extracted for the Hadamard integral of the orthonormal logarithmic BFs due to the implementation of the presented method. The effectiveness of the established scheme in finding accurate numerical solutions is evaluated through the resolution of three examples.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"67 ","pages":"Article 108055"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221137972400740X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the Caputo–Hadamard derivative is fittingly used to define a fractional form of the Rosenau–Hyman equation. To solve this equation, the orthonormal logarithmic Bernstein functions (BFs) are created as a suitable basis for handling this type of derivative. The primary benefit of these functions lies in the ease of computing their Hadamard fractional integral and derivative. These logarithmic functions, combined with the orthonormal Bernstein polynomials (BPs), are simultaneously employed to develop a hybrid strategy for solving the aforementioned equation. More precisely, the orthonormal logarithmic BFs are utilized to approximate the solution in the temporal domain and the orthonormal BPs are employed in the spatial domain. In addition, a matrix is extracted for the Hadamard integral of the orthonormal logarithmic BFs due to the implementation of the presented method. The effectiveness of the established scheme in finding accurate numerical solutions is evaluated through the resolution of three examples.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.