{"title":"Multi focus acoustic field generation using Dammann gratings for phased array transducers","authors":"Tatsuki Fushimi , Yusuke Koroyasu","doi":"10.1016/j.rinp.2024.108040","DOIUrl":null,"url":null,"abstract":"<div><div>Phased array transducers can shape acoustic fields for versatile manipulation; however, generating multiple focal points typically involves complex optimization. This study demonstrates that Dammann gratings – binary phase gratings originally used in optics to generate equal-intensity spot arrays – can be adapted for acoustics to create multiple equal-strength focal points with a phased array transducer. The transducer elements were assigned phases of 0 or <span><math><mi>π</mi></math></span>, based on a Dammann grating defined by its transition points. Simulations show that simple gratings with two transition points can generate fields with up to 12 focal points of nearly equal acoustic pressures. Compared to conventional multi-focus phase optimization techniques, the Dammann grating approach offers computational efficiency and facile reconfiguration of the focal pattern by adjusting the grating hologram. We tested this approach in numerical simulations with a hypothetical high-resolution array, achieving up to 12 focal points, and validated the efficacy of the Dammann grating in a conventional 16x16 transducer array through both simulations and experiments. This comparison highlights that while Dammann gratings effectively generate multi-focus fields, the recreation ability of these gratings in a conventional array shows a lower resolution than the hypothetical array. This study underlines the potential of adapting binary phase functions from photonics to enhance ultrasound-based acoustic manipulation for tasks requiring parallel actuation at multiple points.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"67 ","pages":"Article 108040"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379724007253","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Phased array transducers can shape acoustic fields for versatile manipulation; however, generating multiple focal points typically involves complex optimization. This study demonstrates that Dammann gratings – binary phase gratings originally used in optics to generate equal-intensity spot arrays – can be adapted for acoustics to create multiple equal-strength focal points with a phased array transducer. The transducer elements were assigned phases of 0 or , based on a Dammann grating defined by its transition points. Simulations show that simple gratings with two transition points can generate fields with up to 12 focal points of nearly equal acoustic pressures. Compared to conventional multi-focus phase optimization techniques, the Dammann grating approach offers computational efficiency and facile reconfiguration of the focal pattern by adjusting the grating hologram. We tested this approach in numerical simulations with a hypothetical high-resolution array, achieving up to 12 focal points, and validated the efficacy of the Dammann grating in a conventional 16x16 transducer array through both simulations and experiments. This comparison highlights that while Dammann gratings effectively generate multi-focus fields, the recreation ability of these gratings in a conventional array shows a lower resolution than the hypothetical array. This study underlines the potential of adapting binary phase functions from photonics to enhance ultrasound-based acoustic manipulation for tasks requiring parallel actuation at multiple points.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.