When synthetic plants get sick: Disease graded image datasets by novel regression-conditional diffusion models

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Itziar Egusquiza , Leire Benito-Del-Valle , Artzai Picón , Arantza Bereciartua-Pérez , Laura Gómez-Zamanillo , Andoni Elola , Elisabete Aramendi , Rocío Espejo , Till Eggers , Christian Klukas , Ramón Navarra-Mestre
{"title":"When synthetic plants get sick: Disease graded image datasets by novel regression-conditional diffusion models","authors":"Itziar Egusquiza ,&nbsp;Leire Benito-Del-Valle ,&nbsp;Artzai Picón ,&nbsp;Arantza Bereciartua-Pérez ,&nbsp;Laura Gómez-Zamanillo ,&nbsp;Andoni Elola ,&nbsp;Elisabete Aramendi ,&nbsp;Rocío Espejo ,&nbsp;Till Eggers ,&nbsp;Christian Klukas ,&nbsp;Ramón Navarra-Mestre","doi":"10.1016/j.compag.2024.109690","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces DiffusionPix2Pix, an innovative extension of diffusion models (DMs) that revolutionizes synthetic image generation by seamlessly integrating image priors, surpassing existing state-of-the-art models. Key contributions include regression (graded) conditioning and an arbitrary binary mask, enabling regression-conditional image-to-image translation. DiffusionPix2Pix is compared with Pix2Pix-G and Pix2Pix-GD, two alternative models that rely on image-conditioned GANs adapted for an additional regression conditional task. The model is applied to generate a graded plant disease dataset focusing on <em>Puccinia striiformis</em> symptoms, using disease degree as an additional conditioning input to control the level of disease in generated images. Experiments demonstrate that DiffusionPix2Pix outperforms GAN-based approaches in both sample fidelity and diversity, achieving an Improved Precision (fidelity) of 0.81 (versus 0.45 and 0.47) and an Improved Recall (diversity) of 0.58 (versus 0.31 and 0.31). Furthermore, DiffusionPix2Pix obtained the best Fréchet Inception Distance (FID), with a score of 31.61 compared to 57.38 and 54.34 for GAN-based models. Additionally, perception-based tests with field technicians showed 71.3% of images generated by DiffusionPix2Pix were classified as authentic, significantly outperforming the 20.19% and 22.22% rates for GAN-based models. These findings substantiate the performance of the proposed DiffusionPix2Pix model, both quantitatively and through subjective assessments by domain experts, highlighting its potential in applications requiring precise regression conditioning.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"229 ","pages":"Article 109690"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924010810","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces DiffusionPix2Pix, an innovative extension of diffusion models (DMs) that revolutionizes synthetic image generation by seamlessly integrating image priors, surpassing existing state-of-the-art models. Key contributions include regression (graded) conditioning and an arbitrary binary mask, enabling regression-conditional image-to-image translation. DiffusionPix2Pix is compared with Pix2Pix-G and Pix2Pix-GD, two alternative models that rely on image-conditioned GANs adapted for an additional regression conditional task. The model is applied to generate a graded plant disease dataset focusing on Puccinia striiformis symptoms, using disease degree as an additional conditioning input to control the level of disease in generated images. Experiments demonstrate that DiffusionPix2Pix outperforms GAN-based approaches in both sample fidelity and diversity, achieving an Improved Precision (fidelity) of 0.81 (versus 0.45 and 0.47) and an Improved Recall (diversity) of 0.58 (versus 0.31 and 0.31). Furthermore, DiffusionPix2Pix obtained the best Fréchet Inception Distance (FID), with a score of 31.61 compared to 57.38 and 54.34 for GAN-based models. Additionally, perception-based tests with field technicians showed 71.3% of images generated by DiffusionPix2Pix were classified as authentic, significantly outperforming the 20.19% and 22.22% rates for GAN-based models. These findings substantiate the performance of the proposed DiffusionPix2Pix model, both quantitatively and through subjective assessments by domain experts, highlighting its potential in applications requiring precise regression conditioning.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信