Pushing the boundaries of aphid detection: An investigation into mmWaveRadar and machine learning synergy

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Yuan Liqiang , Fan Haozheng , Xie Jing , Chang Shiran , Amit Kumar Das , Derrick Nguyen Hoang Danh , Khoo Eng Huat , Joe Jimeno , Arokiaswami Alphones , Mohammed Yakoob Siyal , Muhammad Faeyz Karim
{"title":"Pushing the boundaries of aphid detection: An investigation into mmWaveRadar and machine learning synergy","authors":"Yuan Liqiang ,&nbsp;Fan Haozheng ,&nbsp;Xie Jing ,&nbsp;Chang Shiran ,&nbsp;Amit Kumar Das ,&nbsp;Derrick Nguyen Hoang Danh ,&nbsp;Khoo Eng Huat ,&nbsp;Joe Jimeno ,&nbsp;Arokiaswami Alphones ,&nbsp;Mohammed Yakoob Siyal ,&nbsp;Muhammad Faeyz Karim","doi":"10.1016/j.compag.2024.109655","DOIUrl":null,"url":null,"abstract":"<div><div>Agriculture, essential for global sustenance and economic vitality, faces significant threats from pest-induced damages, resulting in substantial crop losses and affecting food supply if not detected on time. Traditional pest control methods, primarily reliant on pesticides. However, blindly applying pesticide may cause environmental issue. Therefore detecting the infested crops at early stage is crucial for application of sustainable pest management solutions. This study innovatively employs the IWR1443BOOST FMCW Millimeter Wave Radar (mmWaveRadar) in conjunction with machine learning algorithms such as SVM, Random Forest, Adaboost, Lightgbm, Catboost, and edRVFL for enhanced pest detection in crops. Our novel framework encompasses the collection and pre-processing of mmWaveRadar data from both healthy and infested crops, followed by comprehensive feature extraction. Decision tree-based methods exhibited a remarkable detection accuracy of 98%. EdRVFL demonstrated a 95% detection accuracy. SVM, post-feature selection, achieved a 90% accuracy. The research reveals the efficacy of the mmWaveRadar as a robust tool, overcoming the environmental and concealment limitations of conventional image-based pest detection methods. The integration of curated features with machine learning algorithms has shown promising empirical results, establishing a connection between the discerned features and the real-world attributes of healthy and infested crops. This study underscores the potential of mmWaveRadar, coupled with specific machine learning algorithms, as a significant stride towards sustainable and effective pest management strategies in agricultural technology.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"229 ","pages":"Article 109655"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924010469","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Agriculture, essential for global sustenance and economic vitality, faces significant threats from pest-induced damages, resulting in substantial crop losses and affecting food supply if not detected on time. Traditional pest control methods, primarily reliant on pesticides. However, blindly applying pesticide may cause environmental issue. Therefore detecting the infested crops at early stage is crucial for application of sustainable pest management solutions. This study innovatively employs the IWR1443BOOST FMCW Millimeter Wave Radar (mmWaveRadar) in conjunction with machine learning algorithms such as SVM, Random Forest, Adaboost, Lightgbm, Catboost, and edRVFL for enhanced pest detection in crops. Our novel framework encompasses the collection and pre-processing of mmWaveRadar data from both healthy and infested crops, followed by comprehensive feature extraction. Decision tree-based methods exhibited a remarkable detection accuracy of 98%. EdRVFL demonstrated a 95% detection accuracy. SVM, post-feature selection, achieved a 90% accuracy. The research reveals the efficacy of the mmWaveRadar as a robust tool, overcoming the environmental and concealment limitations of conventional image-based pest detection methods. The integration of curated features with machine learning algorithms has shown promising empirical results, establishing a connection between the discerned features and the real-world attributes of healthy and infested crops. This study underscores the potential of mmWaveRadar, coupled with specific machine learning algorithms, as a significant stride towards sustainable and effective pest management strategies in agricultural technology.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信