Wenxin Yan , Guangxiang Ma , Xinwei Kang , Zhe Yang , Fengxia Zhang , Daoji Wu , Min Song , Meng Li , Daliang Xu , Xuewu Zhu
{"title":"Thermal-modulated interfacial polymerization towards chlorine-resistant and dense polyester NF membranes for healthy drinking water","authors":"Wenxin Yan , Guangxiang Ma , Xinwei Kang , Zhe Yang , Fengxia Zhang , Daoji Wu , Min Song , Meng Li , Daliang Xu , Xuewu Zhu","doi":"10.1016/j.memsci.2024.123565","DOIUrl":null,"url":null,"abstract":"<div><div>Low-pressure, chlorine-resistant polyester (PE) nanofiltration (NF) membranes achieving superior organic matter/mineral selectivity are a promising candidate for producing healthy drinking water. However, PE-based NF membranes are mostly loosely structured, and less effective in removing natural organic matter. In this work, a maltitol monomer with a distorted non-planar structure was used to precisely regulate the properties of PE-based dense NF membranes (DNF) by thermal-modulated interfacial polymerization (TIP). The <span>TIP</span> contributed to the fast formation of a dense and highly crosslinked PE network on the support. The prepared DNF membranes were highly hydrophilic and electronegative. The non-volatile Isopar G was chosen as an organic solvent to minimize the nanobubble effect on PE membrane surface roughness, resulting in a relatively smooth membrane surface. The optimized [email protected] membrane exhibited satisfactory water permeance (15.7 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>), DOC rejection (79.6 %), and outstanding chlorine resistance (48,000 ppm h). This study provides a new strategy for tailoring high-performance PE-based DNF membranes to treat natural surface water for healthy drinking water.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"717 ","pages":"Article 123565"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824011591","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Low-pressure, chlorine-resistant polyester (PE) nanofiltration (NF) membranes achieving superior organic matter/mineral selectivity are a promising candidate for producing healthy drinking water. However, PE-based NF membranes are mostly loosely structured, and less effective in removing natural organic matter. In this work, a maltitol monomer with a distorted non-planar structure was used to precisely regulate the properties of PE-based dense NF membranes (DNF) by thermal-modulated interfacial polymerization (TIP). The TIP contributed to the fast formation of a dense and highly crosslinked PE network on the support. The prepared DNF membranes were highly hydrophilic and electronegative. The non-volatile Isopar G was chosen as an organic solvent to minimize the nanobubble effect on PE membrane surface roughness, resulting in a relatively smooth membrane surface. The optimized [email protected] membrane exhibited satisfactory water permeance (15.7 L m−2 h−1 bar−1), DOC rejection (79.6 %), and outstanding chlorine resistance (48,000 ppm h). This study provides a new strategy for tailoring high-performance PE-based DNF membranes to treat natural surface water for healthy drinking water.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.