Leak detection and localization in water distribution systems via multilayer networks

IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Daniel Barros , Ariele Zanfei , Andrea Menapace , Gustavo Meirelles , Manuel Herrera , Bruno Brentan
{"title":"Leak detection and localization in water distribution systems via multilayer networks","authors":"Daniel Barros ,&nbsp;Ariele Zanfei ,&nbsp;Andrea Menapace ,&nbsp;Gustavo Meirelles ,&nbsp;Manuel Herrera ,&nbsp;Bruno Brentan","doi":"10.1016/j.wroa.2024.100280","DOIUrl":null,"url":null,"abstract":"<div><div>The continuous increase of water distribution networks (WDNs) in size and complexity poses significant management challenges, including a high risk of failures. Due to the intrinsic interconnected feature of water flow, including losses, this study proposes a methodology based on graph correlation and multilayer network analysis for leak detection and localization in WDNs with multiple components (infrastructure, control devices, hydraulic sensors). The detection process involves correlating monitored data to create a temporal graph and classify vertices. The classification values are then analyzed by the z-score and interquartile range algorithms to detect anomalies. The localization process uses a multi-graph approach that combines sensor data and network topology to determine the sensor coverage area. The Dynamic Time Warping algorithm calculates the similarity between monitored and simulated leak data, identifying likely leak locations. The results demonstrate the methodology’s effectiveness, detecting anomalies 15 minutes after the start of the leak and locating them within a 50-meter range from the actual location of the leak. Furthermore, the research highlights the advantages of using a method based on multilayer networks, which offers insights into leak location, sensor coverage, and reduction of the network’s sample space. Furthermore, the approach presents a proposal to reduce exhaustive hydraulic simulations.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"26 ","pages":"Article 100280"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914724000707","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The continuous increase of water distribution networks (WDNs) in size and complexity poses significant management challenges, including a high risk of failures. Due to the intrinsic interconnected feature of water flow, including losses, this study proposes a methodology based on graph correlation and multilayer network analysis for leak detection and localization in WDNs with multiple components (infrastructure, control devices, hydraulic sensors). The detection process involves correlating monitored data to create a temporal graph and classify vertices. The classification values are then analyzed by the z-score and interquartile range algorithms to detect anomalies. The localization process uses a multi-graph approach that combines sensor data and network topology to determine the sensor coverage area. The Dynamic Time Warping algorithm calculates the similarity between monitored and simulated leak data, identifying likely leak locations. The results demonstrate the methodology’s effectiveness, detecting anomalies 15 minutes after the start of the leak and locating them within a 50-meter range from the actual location of the leak. Furthermore, the research highlights the advantages of using a method based on multilayer networks, which offers insights into leak location, sensor coverage, and reduction of the network’s sample space. Furthermore, the approach presents a proposal to reduce exhaustive hydraulic simulations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research X
Water Research X Environmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍: Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信