L. Romero-Piñeiro , A.L. Villanueva Perales , P. Haro
{"title":"Low-emission hydrogen supply chain for oil refining: Assessment of large-scale production via electrolysis and gasification","authors":"L. Romero-Piñeiro , A.L. Villanueva Perales , P. Haro","doi":"10.1016/j.ijhydene.2024.11.448","DOIUrl":null,"url":null,"abstract":"<div><div>The refining industry is a major hydrogen consumer, mainly relying on fossil fuel-derived hydrogen. While recent literature has focused on the production of hydrogen from water electrolysis, (waste) biomass gasification is another effective method for low-emission hydrogen production, and the refining industry is well positioned for its rapid adoption. This study conducts a techno-economic assessment of the whole supply chain of hydrogen for oil refining and analyses the LCA-climate change for residual biomass gasification and water electrolysis pathways. The potential economic and environmental benefits of combining both production methods are also analyzed. A real case study featuring four different scenarios, using data from a refinery, coupled with local data and future projections for potential curtailment and electricity prices, is included. The hourly hydrogen generation and demand profiles of the refinery were analyzed to accurately assess storage requirements. Results indicate that combining both technologies does not result in clear environmental or cost benefits, with residual biomass gasification emerging as the most advantageous configuration for the base case. Sensitivity analysis reveals that hydrogen produced via electrolysis may become more cost-effective if residual biomass prices are high enough. The importance of underground storage (salt cavern) is highlighted due to its low investment, while other storage methods can significantly increase the Levelized Cost of Hydrogen (LCOH). This study demonstrates that hydrogen production through gasification can be less carbon-intensive and more cost-competitive than electrolysis. Achieving low LCOH values and greenhouse gas emissions is feasible in all scenarios, indicating that both water electrolysis and residual biomass gasification are economically viable options for contributing to a low-emission global energy system.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"97 ","pages":"Pages 338-349"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924051450","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The refining industry is a major hydrogen consumer, mainly relying on fossil fuel-derived hydrogen. While recent literature has focused on the production of hydrogen from water electrolysis, (waste) biomass gasification is another effective method for low-emission hydrogen production, and the refining industry is well positioned for its rapid adoption. This study conducts a techno-economic assessment of the whole supply chain of hydrogen for oil refining and analyses the LCA-climate change for residual biomass gasification and water electrolysis pathways. The potential economic and environmental benefits of combining both production methods are also analyzed. A real case study featuring four different scenarios, using data from a refinery, coupled with local data and future projections for potential curtailment and electricity prices, is included. The hourly hydrogen generation and demand profiles of the refinery were analyzed to accurately assess storage requirements. Results indicate that combining both technologies does not result in clear environmental or cost benefits, with residual biomass gasification emerging as the most advantageous configuration for the base case. Sensitivity analysis reveals that hydrogen produced via electrolysis may become more cost-effective if residual biomass prices are high enough. The importance of underground storage (salt cavern) is highlighted due to its low investment, while other storage methods can significantly increase the Levelized Cost of Hydrogen (LCOH). This study demonstrates that hydrogen production through gasification can be less carbon-intensive and more cost-competitive than electrolysis. Achieving low LCOH values and greenhouse gas emissions is feasible in all scenarios, indicating that both water electrolysis and residual biomass gasification are economically viable options for contributing to a low-emission global energy system.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.