Junheng Liu, Huabin Zhang, Yongxu Wang, Shengyue Xiong, Qian Ji, Chengcheng Ao, Ping Sun
{"title":"Experimental and theoretical investigation of Ce/Ti-doped LaMnO3 catalysts effect on catalytic oxidation rarefied CH4 for natural gas engine","authors":"Junheng Liu, Huabin Zhang, Yongxu Wang, Shengyue Xiong, Qian Ji, Chengcheng Ao, Ping Sun","doi":"10.1016/j.joei.2024.101917","DOIUrl":null,"url":null,"abstract":"<div><div>To mitigate the high greenhouse effect caused by methane emissions of natural gas engines, this study employed the citric acid complexation method to synthesize Ce/Ti-doped LaMnO<sub>3</sub> perovskite catalysts. Firstly, the properties of perovskite catalysts were investigated through several characterization techniques and activity evaluations. Secondly, density functional theory (DFT) calculations were performed to study the effects of Ce/Ti doping on perovskite unit cell properties and methane adsorption characteristics. Results indicate that Ce/Ti doping is conducive to enhancing the magnetic properties and attractive forces between particles, thereby improving the crystallinity and specific surface area of catalyst. Additionally, it enhances the oxygen migration rate, promotes the formation of low-temperature reduction active components and reduces the reduction temperature for the catalysts. When Ce/Ti are co-doped, the ratios of the surface-active elements Mn<sup>4+</sup>/Mn<sup>3+</sup> and O<sup>−</sup>/O<sup>2−</sup> on the catalyst reach their maximum values of 1.56 and 1.53, respectively. The co-doping also leads to the formation of alkaline sites such as Mn-O and Ti-O metal pairs, which facilitate the dehydrogenation oxidation of methane. Ce/Ti-co-doped LaMnO<sub>3</sub> perovskite exhibits the optimal low-temperature oxidation activity towards methane, with an ignition temperature reduced to 269 °C and complete methane conversion at 479 °C. Ce/Ti doping enhances the adsorption behavior of methane on catalyst surface, with the adsorption energy of −5.4361eV. Meanwhile, Ce/Ti doping results in a significant transfer of electrons from H<sub>1</sub> atoms of methane to Mn atoms and increases the charge directivity of the surface-active atoms of catalysts, and in turn, it leads to higher catalytic performance and structural stability.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"118 ","pages":"Article 101917"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003957","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To mitigate the high greenhouse effect caused by methane emissions of natural gas engines, this study employed the citric acid complexation method to synthesize Ce/Ti-doped LaMnO3 perovskite catalysts. Firstly, the properties of perovskite catalysts were investigated through several characterization techniques and activity evaluations. Secondly, density functional theory (DFT) calculations were performed to study the effects of Ce/Ti doping on perovskite unit cell properties and methane adsorption characteristics. Results indicate that Ce/Ti doping is conducive to enhancing the magnetic properties and attractive forces between particles, thereby improving the crystallinity and specific surface area of catalyst. Additionally, it enhances the oxygen migration rate, promotes the formation of low-temperature reduction active components and reduces the reduction temperature for the catalysts. When Ce/Ti are co-doped, the ratios of the surface-active elements Mn4+/Mn3+ and O−/O2− on the catalyst reach their maximum values of 1.56 and 1.53, respectively. The co-doping also leads to the formation of alkaline sites such as Mn-O and Ti-O metal pairs, which facilitate the dehydrogenation oxidation of methane. Ce/Ti-co-doped LaMnO3 perovskite exhibits the optimal low-temperature oxidation activity towards methane, with an ignition temperature reduced to 269 °C and complete methane conversion at 479 °C. Ce/Ti doping enhances the adsorption behavior of methane on catalyst surface, with the adsorption energy of −5.4361eV. Meanwhile, Ce/Ti doping results in a significant transfer of electrons from H1 atoms of methane to Mn atoms and increases the charge directivity of the surface-active atoms of catalysts, and in turn, it leads to higher catalytic performance and structural stability.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.