{"title":"Damage detection in concrete structures with multi-feature backgrounds using the YOLO network family","authors":"Rakesh Raushan , Vaibhav Singhal , Rajib Kumar Jha","doi":"10.1016/j.autcon.2024.105887","DOIUrl":null,"url":null,"abstract":"<div><div>Image processing and Convolution Neural Networks (CNN) are widely used for structural damage assessment. Datasets with damages on similar backgrounds are commonly used in past studies for training and testing of CNN models. These models will often fail to detect damage in images of real infrastructure. A dataset is created which consists of 3750 real images along with its annotations, having diverse features with varying textures, colours, and architectural elements like windows and doors. This study evaluates the performance of You Only Look Once (YOLO) models (v3-v10) on the created dataset, training them in three distinct scenarios: scenario 1 (instances of damage ≤5), scenario 2 (instances of damage >5), and scenario 3 (the complete dataset). The YOLO models show promising results in detecting and locating damages in images with multi-featured backgrounds, wherein the YOLOv4 showed the best precision of 92.2 %, a recall of 86.8 %, and an F1 score of 88.9 %.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"170 ","pages":"Article 105887"},"PeriodicalIF":9.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092658052400623X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Image processing and Convolution Neural Networks (CNN) are widely used for structural damage assessment. Datasets with damages on similar backgrounds are commonly used in past studies for training and testing of CNN models. These models will often fail to detect damage in images of real infrastructure. A dataset is created which consists of 3750 real images along with its annotations, having diverse features with varying textures, colours, and architectural elements like windows and doors. This study evaluates the performance of You Only Look Once (YOLO) models (v3-v10) on the created dataset, training them in three distinct scenarios: scenario 1 (instances of damage ≤5), scenario 2 (instances of damage >5), and scenario 3 (the complete dataset). The YOLO models show promising results in detecting and locating damages in images with multi-featured backgrounds, wherein the YOLOv4 showed the best precision of 92.2 %, a recall of 86.8 %, and an F1 score of 88.9 %.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.