Analytical solutions to the (2+1)-dimensional cubic Klein–Gordon equation in the presence of fractional derivatives: A comparative study

Q1 Mathematics
K. M. Abdul Al Woadud , Md. Jahirul Islam , Dipankar Kumar , Aminur Rahman Khan
{"title":"Analytical solutions to the (2+1)-dimensional cubic Klein–Gordon equation in the presence of fractional derivatives: A comparative study","authors":"K. M. Abdul Al Woadud ,&nbsp;Md. Jahirul Islam ,&nbsp;Dipankar Kumar ,&nbsp;Aminur Rahman Khan","doi":"10.1016/j.padiff.2024.101001","DOIUrl":null,"url":null,"abstract":"<div><div>The study seeks to obtain new analytical solutions for the (2+1)-dimensional cubic Klein–Gordon (cKG) equation using the beta derivative. By applying the unified method to the equation, various types of solitons have been generated, including periodic solitons, periodic solitons with equal and unequal wavelengths, bright solitons, and periodic singular solitons with unequal wavelengths. To demonstrate the fundamental dynamics of the soliton family, three-dimensional and two-dimensional graphs showcasing various novel solutions that satisfy the relevant equations are provided. In relation to fractionality, the bright waveform retains its overall shape, but its smoothness improves as the fractional parameters increase. Conversely, periodic wave solutions show enhanced periodicity as the fractional parameters rise. Additionally, the study provides a comprehensive comparison of solutions derived from models utilizing conformable, M-truncated, and beta derivatives. The investigation explores the effect of the fractional parameter on soliton amplitude, using graphs to illustrate this impact by assigning specific values to the fractional parameter. The properties of the waves can be modified through changes to the model's parameters to produce the appropriate wave profiles. Consequently, the solutions we obtained could be particularly valuable for analyzing physical problems associated with nonlinear complex dynamical systems.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 101001"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The study seeks to obtain new analytical solutions for the (2+1)-dimensional cubic Klein–Gordon (cKG) equation using the beta derivative. By applying the unified method to the equation, various types of solitons have been generated, including periodic solitons, periodic solitons with equal and unequal wavelengths, bright solitons, and periodic singular solitons with unequal wavelengths. To demonstrate the fundamental dynamics of the soliton family, three-dimensional and two-dimensional graphs showcasing various novel solutions that satisfy the relevant equations are provided. In relation to fractionality, the bright waveform retains its overall shape, but its smoothness improves as the fractional parameters increase. Conversely, periodic wave solutions show enhanced periodicity as the fractional parameters rise. Additionally, the study provides a comprehensive comparison of solutions derived from models utilizing conformable, M-truncated, and beta derivatives. The investigation explores the effect of the fractional parameter on soliton amplitude, using graphs to illustrate this impact by assigning specific values to the fractional parameter. The properties of the waves can be modified through changes to the model's parameters to produce the appropriate wave profiles. Consequently, the solutions we obtained could be particularly valuable for analyzing physical problems associated with nonlinear complex dynamical systems.
分数阶导数存在下(2+1)维三次Klein-Gordon方程的解析解:比较研究
该研究旨在利用beta导数获得(2+1)维立方Klein-Gordon (cKG)方程的新解析解。通过对方程进行统一处理,得到了周期孤子、等波长和不等波长的周期孤子、亮孤子和不等波长的周期奇异孤子等多种类型的孤子。为了证明孤子族的基本动力学,提供了三维和二维图形,展示了满足相关方程的各种新颖解。相对于分数形,明亮波形保持其整体形状,但其平滑度随着分数形参数的增加而提高。相反,随着分数参数的增加,周期波解的周期性增强。此外,该研究还提供了利用符合、m截断和beta导数的模型得出的解决方案的全面比较。研究探讨了分数参数对孤子振幅的影响,通过给分数参数指定特定的值,使用图表来说明这种影响。可以通过改变模型的参数来修改波浪的性质,以产生适当的波浪剖面。因此,我们得到的解对于分析与非线性复杂动力系统相关的物理问题特别有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信