A manganese phthalocyanine histidine composite-modified carbon paste electrode as a biomimetic sensor for bisphenol A determination

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Amadou Soukairatou Moustapha , Corneille Bakouan , Abdoulkadri Ayouba Mahamane , Boubié Guel
{"title":"A manganese phthalocyanine histidine composite-modified carbon paste electrode as a biomimetic sensor for bisphenol A determination","authors":"Amadou Soukairatou Moustapha ,&nbsp;Corneille Bakouan ,&nbsp;Abdoulkadri Ayouba Mahamane ,&nbsp;Boubié Guel","doi":"10.1016/j.rechem.2024.101927","DOIUrl":null,"url":null,"abstract":"<div><div>A biomimetic sensor was prepared from carbon paste electrode (CPE) modified with manganese phthalocyanine (MnPc) and histidine (His), and used for the determination of bisphenol A (BPA). The electrochemical biomimetic sensor (MnPc-His-CPE) gave significant current responses for BPA oxidation in comparison with CPE and MnPc-CPE, individually. The morphological and chemical characterizations of the sensor surface were studied by FT-IR, UV-visible Spectrophotometry, and SEM. The electrochemical behavior of the sensor and the oxidation behavior of BPA at the MnPc-His-CPE/BPA interface were investigated by cyclic voltammetry (CV), chronocoulometry (CC), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). Square wave voltammetry (SWV), applied as a sensitive analytical method for BPA determination, led to a good linear correlation between BPA concentration and peak current in the range from 2.10<sup>−8</sup> mol.L<sup>−1</sup> to 5.10<sup>−5</sup> mol.L<sup>−1</sup> and a detection limit of 4.63 nM (S/N = 3). The relative standard deviation was 4.10 % (n = 10). The proposed sensor was found to be highly selective for BPA. In addition, the reproducibility and stability of the sensor were found to be satisfactory. The accuracy of the electrochemical biomimetic sensor was compared with HPLC method. The sensor has been successfully applied for the determination of BPA from real water samples with a good recovery, ranging from 91.40 % to 106.30 %.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"13 ","pages":"Article 101927"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715624006234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A biomimetic sensor was prepared from carbon paste electrode (CPE) modified with manganese phthalocyanine (MnPc) and histidine (His), and used for the determination of bisphenol A (BPA). The electrochemical biomimetic sensor (MnPc-His-CPE) gave significant current responses for BPA oxidation in comparison with CPE and MnPc-CPE, individually. The morphological and chemical characterizations of the sensor surface were studied by FT-IR, UV-visible Spectrophotometry, and SEM. The electrochemical behavior of the sensor and the oxidation behavior of BPA at the MnPc-His-CPE/BPA interface were investigated by cyclic voltammetry (CV), chronocoulometry (CC), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). Square wave voltammetry (SWV), applied as a sensitive analytical method for BPA determination, led to a good linear correlation between BPA concentration and peak current in the range from 2.10−8 mol.L−1 to 5.10−5 mol.L−1 and a detection limit of 4.63 nM (S/N = 3). The relative standard deviation was 4.10 % (n = 10). The proposed sensor was found to be highly selective for BPA. In addition, the reproducibility and stability of the sensor were found to be satisfactory. The accuracy of the electrochemical biomimetic sensor was compared with HPLC method. The sensor has been successfully applied for the determination of BPA from real water samples with a good recovery, ranging from 91.40 % to 106.30 %.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信