Semiconducting polymer nanoparticles for fluorescence biosensors and phototherapy: A review

IF 5.8 2区 化学 Q1 POLYMER SCIENCE
Zi Long , Jianjun Gan , Xianglian Wang , Xinde Jiang , Yilong Zou , Shaorong Huang , Xiaoyong Zhang , Yen Wei
{"title":"Semiconducting polymer nanoparticles for fluorescence biosensors and phototherapy: A review","authors":"Zi Long ,&nbsp;Jianjun Gan ,&nbsp;Xianglian Wang ,&nbsp;Xinde Jiang ,&nbsp;Yilong Zou ,&nbsp;Shaorong Huang ,&nbsp;Xiaoyong Zhang ,&nbsp;Yen Wei","doi":"10.1016/j.eurpolymj.2024.113608","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of semiconductor polymers (SPs) has paved the way for obtaining smart and multifunctional semiconductor polymer nanoparticles (SPNs) with distinctive characteristics and diversified applications. Based on their superior optical properties of SPs, the SPNs exhibit strong fluorescence brightness, low cytotoxicity, admirable photostability, favourable reactive oxygen species (ROS) generation capability, and satisfactory photothermal properties, making it an excellent tool for various biomedical applications (e.g., fluorescence imaging, sensing and phototherapy). Due to such numerous characteristics, like well designability and facile surface functionalization, the SPNs have been continuously emerging as prominent figures in the medical field, becoming leaders in their respective research areas and achieving numerous accomplishments. With the rapid development of SPNs in biomedical fields, a comprehensive reviewer article to summarize the recent achievements is urgent required. This review summarizes the latest advancements achieved in recent five years for the application of SPNs in biological and biomedical fields, particularly in fluorescence biosensors and phototherapy. Following an introduction into the field, we firstly focus on diverse examples of SPNs-based probes for biosensing, both <em>in vitro</em> and <em>in vivo</em> using cancer cells and animal models. Subsequently, the review highlighted the pivotal applications of SPNs in phototherapy, primarily through photodynamic therapy (PDT), photothermal therapy (PTT) and various phototherapy-based synergistic therapy. Finally, we summarize the current challenges and gives an outlook on the potential future trends on SPNs as advanced healthcare material. In the future, researchers should further optimize the performance of materials along with developing more novel multifunctional materials, and strive to expand the applications of SPNs in the biomedical fields, providing new possibilities for improving fluorescence imaging and phototherapy, further boosting their clinical translation.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"222 ","pages":"Article 113608"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724008693","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of semiconductor polymers (SPs) has paved the way for obtaining smart and multifunctional semiconductor polymer nanoparticles (SPNs) with distinctive characteristics and diversified applications. Based on their superior optical properties of SPs, the SPNs exhibit strong fluorescence brightness, low cytotoxicity, admirable photostability, favourable reactive oxygen species (ROS) generation capability, and satisfactory photothermal properties, making it an excellent tool for various biomedical applications (e.g., fluorescence imaging, sensing and phototherapy). Due to such numerous characteristics, like well designability and facile surface functionalization, the SPNs have been continuously emerging as prominent figures in the medical field, becoming leaders in their respective research areas and achieving numerous accomplishments. With the rapid development of SPNs in biomedical fields, a comprehensive reviewer article to summarize the recent achievements is urgent required. This review summarizes the latest advancements achieved in recent five years for the application of SPNs in biological and biomedical fields, particularly in fluorescence biosensors and phototherapy. Following an introduction into the field, we firstly focus on diverse examples of SPNs-based probes for biosensing, both in vitro and in vivo using cancer cells and animal models. Subsequently, the review highlighted the pivotal applications of SPNs in phototherapy, primarily through photodynamic therapy (PDT), photothermal therapy (PTT) and various phototherapy-based synergistic therapy. Finally, we summarize the current challenges and gives an outlook on the potential future trends on SPNs as advanced healthcare material. In the future, researchers should further optimize the performance of materials along with developing more novel multifunctional materials, and strive to expand the applications of SPNs in the biomedical fields, providing new possibilities for improving fluorescence imaging and phototherapy, further boosting their clinical translation.

Abstract Image

用于荧光生物传感器和光疗的半导体聚合物纳米颗粒:综述
半导体聚合物(SPs)的出现为获得具有独特特性和多样化应用的智能多功能半导体聚合物纳米粒子(SPs)铺平了道路。基于SPs优越的光学特性,spn具有强荧光亮度、低细胞毒性、良好的光稳定性、良好的活性氧(ROS)生成能力和令人满意的光热性能,使其成为各种生物医学应用(如荧光成像、传感和光疗)的优秀工具。由于具有良好的可设计性和易于表面功能化等诸多特点,spn在医学领域不断崭露头角,成为各自研究领域的领军人物,取得了诸多成就。随着spn在生物医学领域的快速发展,迫切需要一篇综合性的综述文章来总结最近的研究成果。本文综述了近五年来SPNs在生物和生物医学领域的最新应用进展,特别是在荧光生物传感器和光治疗方面的应用。在介绍该领域之后,我们首先关注基于spns的生物传感探针的各种例子,包括体外和体内使用癌细胞和动物模型。随后,综述强调了spn在光疗中的关键应用,主要是通过光动力治疗(PDT)、光热治疗(PTT)和各种基于光疗的协同治疗。最后,我们总结了当前的挑战,并对spn作为先进医疗保健材料的潜在未来趋势进行了展望。未来,研究人员应进一步优化材料性能,开发更多新型多功能材料,努力扩大spn在生物医学领域的应用,为改进荧光成像和光治疗提供新的可能性,进一步促进其临床转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Polymer Journal
European Polymer Journal 化学-高分子科学
CiteScore
9.90
自引率
10.00%
发文量
691
审稿时长
23 days
期刊介绍: European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas: Polymer synthesis and functionalization • Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers. Stimuli-responsive polymers • Including shape memory and self-healing polymers. Supramolecular polymers and self-assembly • Molecular recognition and higher order polymer structures. Renewable and sustainable polymers • Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites. Polymers at interfaces and surfaces • Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications. Biomedical applications and nanomedicine • Polymers for regenerative medicine, drug delivery molecular release and gene therapy The scope of European Polymer Journal no longer includes Polymer Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信