Machine learning model with a novel self–adjustment method: A powerful tool for predicting biomass ash fusibility and enhancing its potential applications

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Lin Mu , Zhen Wang , Meng Sun , Yan Shang , Hang Pu , Ming Dong
{"title":"Machine learning model with a novel self–adjustment method: A powerful tool for predicting biomass ash fusibility and enhancing its potential applications","authors":"Lin Mu ,&nbsp;Zhen Wang ,&nbsp;Meng Sun ,&nbsp;Yan Shang ,&nbsp;Hang Pu ,&nbsp;Ming Dong","doi":"10.1016/j.renene.2024.121650","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass ash has been extensively studied for its potential applications, owing to its high content of alkali and alkaline earth metallic species (AAEMs). These AAEMs can act as catalysts in biomass thermochemical conversion and other industrial processes. However, AAEMs can also cause slagging and agglomeration, which can significantly impact system operations. To better understand these effects, we investigated the relationship between ash melting behavior and the chemical composition of biomass ash using a machine learning (ML) model. To enhance the model's performance, we employed a self-adjustment (SA) method, which significantly improved predictive accuracy. The SA-ETR model achieved an R<sup>2</sup> value greater than 0.93, based on a dataset of 268 data points. We provided a detailed explanation of the SA-optimized ML model using Python's Shapley Additive Explanations (SHAP) library, which included global and local feature importance analysis, investigation of simultaneous effects between two features, and individual data point prediction analysis. The contents of K<sub>2</sub>O, SiO<sub>2</sub>, CaO, and Al<sub>2</sub>O<sub>3</sub> were considered as the most significant factors affecting biomass ash's initial deformation temperature (IDT). The insights gained from this study can help investors and researchers reduce experimental complexity and improve system operation.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121650"},"PeriodicalIF":9.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096014812401718X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Biomass ash has been extensively studied for its potential applications, owing to its high content of alkali and alkaline earth metallic species (AAEMs). These AAEMs can act as catalysts in biomass thermochemical conversion and other industrial processes. However, AAEMs can also cause slagging and agglomeration, which can significantly impact system operations. To better understand these effects, we investigated the relationship between ash melting behavior and the chemical composition of biomass ash using a machine learning (ML) model. To enhance the model's performance, we employed a self-adjustment (SA) method, which significantly improved predictive accuracy. The SA-ETR model achieved an R2 value greater than 0.93, based on a dataset of 268 data points. We provided a detailed explanation of the SA-optimized ML model using Python's Shapley Additive Explanations (SHAP) library, which included global and local feature importance analysis, investigation of simultaneous effects between two features, and individual data point prediction analysis. The contents of K2O, SiO2, CaO, and Al2O3 were considered as the most significant factors affecting biomass ash's initial deformation temperature (IDT). The insights gained from this study can help investors and researchers reduce experimental complexity and improve system operation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信