Development of an engineering-friendly evaluation model for solar spectral irradiance using readily accessible subaerial meteorology

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Shuhao Wang , Jinqing Peng , Yimo Luo , Tao Ma , Peng Xue , Yupeng Wu , Qiangzhi Zhang , Jiayu Zhou
{"title":"Development of an engineering-friendly evaluation model for solar spectral irradiance using readily accessible subaerial meteorology","authors":"Shuhao Wang ,&nbsp;Jinqing Peng ,&nbsp;Yimo Luo ,&nbsp;Tao Ma ,&nbsp;Peng Xue ,&nbsp;Yupeng Wu ,&nbsp;Qiangzhi Zhang ,&nbsp;Jiayu Zhou","doi":"10.1016/j.renene.2024.121632","DOIUrl":null,"url":null,"abstract":"<div><div>Solar spectral irradiance has a crucial impact on building energy conservation, especially on photovoltaic (PV) generation. However, it takes a high cost to measure and predict the dynamic solar spectral irradiance for various atmosphere conditions and sun positions. Combining with machine learning, this paper developed a novel solar spectral irradiance estimation model to evaluate the annual solar spectral property in a region. This paper employs the readily accessible subaerial meteorology as model input. The average photon energy (APE) serves as a connection between the normalized solar spectral irradiance and the meteorology parameters. Verification showed the model this paper proposed estimated the normalized solar spectral irradiance well. Further, annual simulation of solar spectral irradiance was conducted by inputting typical meteorology year (TMY) dataset. The annual difference of the normalized spectral irradiance reached to 10.57 %, which reflects the great importance to determine the practical solar spectral irradiance. A typical day of spectra was proposed for each month to reveal the monthly variation in solar spectral irradiance. This study provides a convenient technical method to evaluate the solar spectral property for engineering applications. The results may guide industries in selecting suitable solar cells for the region, thereby prompting the development of solar applications.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121632"},"PeriodicalIF":9.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124017002","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Solar spectral irradiance has a crucial impact on building energy conservation, especially on photovoltaic (PV) generation. However, it takes a high cost to measure and predict the dynamic solar spectral irradiance for various atmosphere conditions and sun positions. Combining with machine learning, this paper developed a novel solar spectral irradiance estimation model to evaluate the annual solar spectral property in a region. This paper employs the readily accessible subaerial meteorology as model input. The average photon energy (APE) serves as a connection between the normalized solar spectral irradiance and the meteorology parameters. Verification showed the model this paper proposed estimated the normalized solar spectral irradiance well. Further, annual simulation of solar spectral irradiance was conducted by inputting typical meteorology year (TMY) dataset. The annual difference of the normalized spectral irradiance reached to 10.57 %, which reflects the great importance to determine the practical solar spectral irradiance. A typical day of spectra was proposed for each month to reveal the monthly variation in solar spectral irradiance. This study provides a convenient technical method to evaluate the solar spectral property for engineering applications. The results may guide industries in selecting suitable solar cells for the region, thereby prompting the development of solar applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信