Real-vehicle experimental validation of a predictive energy management strategy for fuel cell vehicles

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Sandro Kofler , Georg Rammer , Alexander Schnabel , David Weingrill , Peter Bardosch , Stefan Jakubek , Christoph Hametner
{"title":"Real-vehicle experimental validation of a predictive energy management strategy for fuel cell vehicles","authors":"Sandro Kofler ,&nbsp;Georg Rammer ,&nbsp;Alexander Schnabel ,&nbsp;David Weingrill ,&nbsp;Peter Bardosch ,&nbsp;Stefan Jakubek ,&nbsp;Christoph Hametner","doi":"10.1016/j.jpowsour.2024.235901","DOIUrl":null,"url":null,"abstract":"<div><div>Predictive information is highly valuable for energy management strategies (EMSs) of fuel cell vehicles. In particular, long-term predictions can significantly improve the fuel efficiency because they allow for an optimization of the energy management before departure. This potential has been demonstrated in numerous simulation studies. This work extends the literature with an extensive experimental validation of a predictive EMS that exploits route-based long-term predictions in the form of optimized reference trajectories for the battery state of charge. The experimental validation is performed with a real passenger fuel cell vehicle and strongly focuses on the real-world application where random influences such as traffic cause considerable disturbances with respect to the long-term prediction. The validation comprises two stages: First, real driving tests are repeatedly conducted on public roads, analyzing the robustness of the predictive EMS and assessing fuel efficiency gains over a nonpredictive EMS. Second, chassis dynamometer tests are performed where a selected real driving cycle is reproduced to compare the two EMSs directly. The chassis dynamometer tests confirm a significant reduction in the fuel consumption by <span><math><mrow><mtext>6.4</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> compared to the nonpredictive EMS. The experimental results are analyzed quantitatively and qualitatively in detail.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"629 ","pages":"Article 235901"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018536","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Predictive information is highly valuable for energy management strategies (EMSs) of fuel cell vehicles. In particular, long-term predictions can significantly improve the fuel efficiency because they allow for an optimization of the energy management before departure. This potential has been demonstrated in numerous simulation studies. This work extends the literature with an extensive experimental validation of a predictive EMS that exploits route-based long-term predictions in the form of optimized reference trajectories for the battery state of charge. The experimental validation is performed with a real passenger fuel cell vehicle and strongly focuses on the real-world application where random influences such as traffic cause considerable disturbances with respect to the long-term prediction. The validation comprises two stages: First, real driving tests are repeatedly conducted on public roads, analyzing the robustness of the predictive EMS and assessing fuel efficiency gains over a nonpredictive EMS. Second, chassis dynamometer tests are performed where a selected real driving cycle is reproduced to compare the two EMSs directly. The chassis dynamometer tests confirm a significant reduction in the fuel consumption by 6.4% compared to the nonpredictive EMS. The experimental results are analyzed quantitatively and qualitatively in detail.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信