{"title":"Preparation of hydrophilic Cr-doped LiTi2(PO4)3 ion sieves with expanded cell structure for enhanced lithium extraction","authors":"Mingzhu Li, Xin Shen, Xu Yang, Zhijun Xu, Feng Xue, Shengui Ju","doi":"10.1016/j.desal.2024.118354","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphate-based HTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> was a novel lithium ion with a NASICON network structure. In this work, Cr doped was used to improve the adsorption performance by expanding the Li<sup>+</sup> transport channel and increasing the hydrophilicity of the adsorbent. The crystal structure of Cr-LTPO-0.5 was characterized by XRD, XPS, Contact angle and FT-IR analysis, and the morphology of Cr-LTPO-0.5 was analyzed by SEM and HR-TEM. Cr-HTPO-0.5 was obtained after acid washing of Cr-LTPO-0.5. The adsorption of Li<sup>+</sup> on Cr-HTPO-0.5 was consistent with the Langmuir isothermal model and pseudo-2nd-order kinetic model, in which the adsorption was endothermic and spontaneous process. The structure and adsorption energy of Li<sup>+</sup> on Cr-HTPO-0.5 were calculated by the density function theory (DFT) to assess the feasibility of lithium uptake. Cr-HTPO-0.5 showed remarkable selectivity for Li<sup>+</sup> on heteroatoms in artificial brines. These results made Cr-HTPO-0.5 as a highly promising candidate for applications in Li<sup>+</sup> recovery.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"597 ","pages":"Article 118354"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424010658","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphate-based HTi2(PO4)3 was a novel lithium ion with a NASICON network structure. In this work, Cr doped was used to improve the adsorption performance by expanding the Li+ transport channel and increasing the hydrophilicity of the adsorbent. The crystal structure of Cr-LTPO-0.5 was characterized by XRD, XPS, Contact angle and FT-IR analysis, and the morphology of Cr-LTPO-0.5 was analyzed by SEM and HR-TEM. Cr-HTPO-0.5 was obtained after acid washing of Cr-LTPO-0.5. The adsorption of Li+ on Cr-HTPO-0.5 was consistent with the Langmuir isothermal model and pseudo-2nd-order kinetic model, in which the adsorption was endothermic and spontaneous process. The structure and adsorption energy of Li+ on Cr-HTPO-0.5 were calculated by the density function theory (DFT) to assess the feasibility of lithium uptake. Cr-HTPO-0.5 showed remarkable selectivity for Li+ on heteroatoms in artificial brines. These results made Cr-HTPO-0.5 as a highly promising candidate for applications in Li+ recovery.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.