Noemi Linares, Aseem Chawla, Rui Li, Jeffrey D. Rimer* and Javier García-Martínez*,
{"title":"Combining Electron Microscopy and Elemental Mapping for the Investigation of Zeolite Crystallization","authors":"Noemi Linares, Aseem Chawla, Rui Li, Jeffrey D. Rimer* and Javier García-Martínez*, ","doi":"10.1021/acsmaterialslett.4c0169210.1021/acsmaterialslett.4c01692","DOIUrl":null,"url":null,"abstract":"<p >An elemental mapping method using electron microscopy with energy dispersive X-ray spectroscopy has proved to be a versatile tool to track the crystallization of zeolites. We have observed that disparities in local concentration of inorganic structure-directing agent (e.g., alkali metal) is an effective indicator of the degree of crystallization in zeolites. In this study, we demonstrate this approach for zeolite ZSM-22 (TON) with very small crystal sizes (<1 μm), where the high spatial resolution of elemental mapping in combination with scanning transmission electron microscopy allows one to obtain a high sensitivity for the detection of early-stage crystals. The crystallization of TON proceeds through a primary alkali rich amorphous phase that evolves to a secondary poorly crystalline phase which already possesses the composition of the final zeolite crystals. This fact gives us the possibility to determine the onset of disorder-to-order transitions in individual crystals of materials, that are amorphous by X-ray diffraction.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 12","pages":"5479–5483 5479–5483"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01692","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An elemental mapping method using electron microscopy with energy dispersive X-ray spectroscopy has proved to be a versatile tool to track the crystallization of zeolites. We have observed that disparities in local concentration of inorganic structure-directing agent (e.g., alkali metal) is an effective indicator of the degree of crystallization in zeolites. In this study, we demonstrate this approach for zeolite ZSM-22 (TON) with very small crystal sizes (<1 μm), where the high spatial resolution of elemental mapping in combination with scanning transmission electron microscopy allows one to obtain a high sensitivity for the detection of early-stage crystals. The crystallization of TON proceeds through a primary alkali rich amorphous phase that evolves to a secondary poorly crystalline phase which already possesses the composition of the final zeolite crystals. This fact gives us the possibility to determine the onset of disorder-to-order transitions in individual crystals of materials, that are amorphous by X-ray diffraction.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.