Juliana Bruneli Falqueto*, Natasha Hales, Thomas J. Schimidt and Emiliana Fabbri*,
{"title":"Recent Advances in Nickel-Based Perovskite Oxides for the Electrocatalytic Oxygen Evolution Reaction in Alkaline Electrolytes","authors":"Juliana Bruneli Falqueto*, Natasha Hales, Thomas J. Schimidt and Emiliana Fabbri*, ","doi":"10.1021/acsmaterialslett.4c0147110.1021/acsmaterialslett.4c01471","DOIUrl":null,"url":null,"abstract":"<p >Perovskites ABO<sub>3</sub> are very versatile catalysts that can change their structure in several ways to enhance their electrocatalytic properties. Among nickel-based perovskites, those containing lanthanum or alkaline earth elements at the A-site display notable potential for the oxygen evolution reaction (OER) in alkaline electrolytes. Properties of nickel-based perovskites include the formation of mixed nickel oxidation states and the remarkable ability to accommodate numerous oxygen vacancies within their lattice. Oxygen vacancy content is an effective method to boost the electrocatalytic performance, and nickelate perovskites include a fascinating family of materials that exhibit oriented lattice oxygen vacancies: the infinite layer nickelates. However, nickelate perovskites remain a relatively underexplored area of research, likely due to the challenges associate with their synthesis. A major challenge lies in understanding the dynamic self-reconstruction of nickel-based perovskites under OER conditions. Monitoring this self-reconstruction through <i>operando</i> characterization is essential for precisely unraveling the causes of catalyst transformation and understanding the OER mechanisms. Leveraging these findings enables the design of more effective catalysts. In this Perspective, we aim to provide a summary of recent advances, insights, and suggestions for the development of nickel-based perovskites for electrocatalytic OER in alkaline electrolytes.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 12","pages":"5227–5241 5227–5241"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01471","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskites ABO3 are very versatile catalysts that can change their structure in several ways to enhance their electrocatalytic properties. Among nickel-based perovskites, those containing lanthanum or alkaline earth elements at the A-site display notable potential for the oxygen evolution reaction (OER) in alkaline electrolytes. Properties of nickel-based perovskites include the formation of mixed nickel oxidation states and the remarkable ability to accommodate numerous oxygen vacancies within their lattice. Oxygen vacancy content is an effective method to boost the electrocatalytic performance, and nickelate perovskites include a fascinating family of materials that exhibit oriented lattice oxygen vacancies: the infinite layer nickelates. However, nickelate perovskites remain a relatively underexplored area of research, likely due to the challenges associate with their synthesis. A major challenge lies in understanding the dynamic self-reconstruction of nickel-based perovskites under OER conditions. Monitoring this self-reconstruction through operando characterization is essential for precisely unraveling the causes of catalyst transformation and understanding the OER mechanisms. Leveraging these findings enables the design of more effective catalysts. In this Perspective, we aim to provide a summary of recent advances, insights, and suggestions for the development of nickel-based perovskites for electrocatalytic OER in alkaline electrolytes.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.