Matthew Klenk, Neelima Paul, Michael J. Counihan, Zachary D. Hood, Yisi Zhu, Justin G. Connell, Charles Hervoches, Ralph Gilles, Jeff Sakamoto, Sanja Tepavcevic* and Peter Zapol*,
{"title":"Comparative Analysis of Reactivity of Al and Ga Doped Garnet Solid State Electrolyte at the Interface with Li Metal","authors":"Matthew Klenk, Neelima Paul, Michael J. Counihan, Zachary D. Hood, Yisi Zhu, Justin G. Connell, Charles Hervoches, Ralph Gilles, Jeff Sakamoto, Sanja Tepavcevic* and Peter Zapol*, ","doi":"10.1021/acsmaterialslett.4c0123710.1021/acsmaterialslett.4c01237","DOIUrl":null,"url":null,"abstract":"<p >Lithium garnet (Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>, LLZO) based solid electrolytes are leading candidate materials for all-solid-state batteries with lithium metal anodes because of their high ionic conductivity, high mechanical toughness, and superior electrochemical stability. While doping LLZO with Al and Ga increases its ionic conductivity by stabilizing the cubic phase, the impact of dopants on its (electro)chemical stability at the interfaces with Li metal is critical. Our study of differences between Al- and Ga-doped LLZO when interfaced with lithium metal using X-ray photoelectron spectroscopy and density functional theory shows a higher propensity of Ga to move across LLZO interface with Li metal and form Ga–Li alloy. Neutron diffraction reveals loss of cubic phase resulting from the loss of dopant that explains electrochemical behavior differences between Ga- and Al-doped LLZO. Overall, our study reveals the key role of dopant chemistry in enabling stable solid electrolyte materials for all-solid-state batteries.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 12","pages":"5216–5221 5216–5221"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01237","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium garnet (Li7La3Zr2O12, LLZO) based solid electrolytes are leading candidate materials for all-solid-state batteries with lithium metal anodes because of their high ionic conductivity, high mechanical toughness, and superior electrochemical stability. While doping LLZO with Al and Ga increases its ionic conductivity by stabilizing the cubic phase, the impact of dopants on its (electro)chemical stability at the interfaces with Li metal is critical. Our study of differences between Al- and Ga-doped LLZO when interfaced with lithium metal using X-ray photoelectron spectroscopy and density functional theory shows a higher propensity of Ga to move across LLZO interface with Li metal and form Ga–Li alloy. Neutron diffraction reveals loss of cubic phase resulting from the loss of dopant that explains electrochemical behavior differences between Ga- and Al-doped LLZO. Overall, our study reveals the key role of dopant chemistry in enabling stable solid electrolyte materials for all-solid-state batteries.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.