Suppressing Atmospheric Degradation of Sulfide-Based Solid Electrolytes via Ultrathin Metal Oxide Layers

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Taewoo Kim, Zachary D. Hood, Aditya Sundar, Anil U. Mane, Francisco Lagunas, Khagesh Kumar, Neelam Sunariwal, Jordi Cabana, Sanja Tepavcevic, Jeffrey W. Elam, Peter Zapol and Justin G. Connell*, 
{"title":"Suppressing Atmospheric Degradation of Sulfide-Based Solid Electrolytes via Ultrathin Metal Oxide Layers","authors":"Taewoo Kim,&nbsp;Zachary D. Hood,&nbsp;Aditya Sundar,&nbsp;Anil U. Mane,&nbsp;Francisco Lagunas,&nbsp;Khagesh Kumar,&nbsp;Neelam Sunariwal,&nbsp;Jordi Cabana,&nbsp;Sanja Tepavcevic,&nbsp;Jeffrey W. Elam,&nbsp;Peter Zapol and Justin G. Connell*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0192310.1021/acsmaterialslett.4c01923","DOIUrl":null,"url":null,"abstract":"<p >Sulfide-based solid-state electrolytes (SSEs) are promising materials with superior Li-ion conductivity; however, their poor atmospheric stability limits commercial manufacturing at scale. Here, we investigate the impact of ultrathin metal oxide layers deposited via atomic layer deposition (ALD) on the stability of Li<sub>6</sub>PS<sub>5</sub>Cl (LPSCl). Al<sub>2</sub>O<sub>3</sub> layers grown directly on LPSCl particles significantly stabilize the surface chemistry and Li-ion transport properties relative to uncoated material upon exposure to both an ambient atmosphere (22% relative humidity, RH) and humidified O<sub>2</sub> (100% RH). Detailed investigations indicate that coatings impede the surface and bulk degradation kinetics of exposed materials, even for coatings as thin as ∼1 Å. This suggests that stabilization is due to more than just a physical barrier. Shifts in valence band edge positions of coated LPSCl indicate that ALD coatings alter the surface electronic structure and resulting oxidation tendency of underlying LPSCl, suggesting new avenues to improving the environmental stability of sulfide SSEs.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 12","pages":"5409–5417 5409–5417"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01923","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfide-based solid-state electrolytes (SSEs) are promising materials with superior Li-ion conductivity; however, their poor atmospheric stability limits commercial manufacturing at scale. Here, we investigate the impact of ultrathin metal oxide layers deposited via atomic layer deposition (ALD) on the stability of Li6PS5Cl (LPSCl). Al2O3 layers grown directly on LPSCl particles significantly stabilize the surface chemistry and Li-ion transport properties relative to uncoated material upon exposure to both an ambient atmosphere (22% relative humidity, RH) and humidified O2 (100% RH). Detailed investigations indicate that coatings impede the surface and bulk degradation kinetics of exposed materials, even for coatings as thin as ∼1 Å. This suggests that stabilization is due to more than just a physical barrier. Shifts in valence band edge positions of coated LPSCl indicate that ALD coatings alter the surface electronic structure and resulting oxidation tendency of underlying LPSCl, suggesting new avenues to improving the environmental stability of sulfide SSEs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信