{"title":"Enhancing strength and stress corrosion cracking resistance in high-Mg Al-Mg alloys through nanostructuring and controlled annealing","authors":"Z.C. Tang, W. Xu, D.Y. Zhao, B. Zhang","doi":"10.1016/j.jmst.2024.10.042","DOIUrl":null,"url":null,"abstract":"The strength of traditional Al-Mg alloys primarily depends on cold deformation and increasing Mg content, but it can become susceptible to stress corrosion cracking (SCC) when the Mg content is high (>3 wt.%). Simultaneous optimizing strength and SCC resistance in Al-Mg alloys is challenging. This study introduces a nanostructured Al-10Mg (10 wt.%) alloy with improved strength and SCC resistance by dynamic plastic deformation and optimized annealing. The as-deformed sample exhibits a nano-scaled lamellar structure. With rising annealing temperatures, structure size of the alloy increases while dislocation density decreases, transitioning lamellar to equiaxed grains. Nanostructured Al-10Mg alloys annealed at 250°C exhibit superior mechanical properties and reduced SCC susceptibility at sensitization state. The high fraction of low-angle grain boundaries with a reduction in dislocation density can effectively suppress the nucleation and growth of grain boundary precipitates (GBPs) during sensitization, thereby maintaining a relatively low GBPs coverage. The results provide guidance for designing Al-Mg alloys that are stronger and more resistant to SCC with higher Mg content.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"27 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.042","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The strength of traditional Al-Mg alloys primarily depends on cold deformation and increasing Mg content, but it can become susceptible to stress corrosion cracking (SCC) when the Mg content is high (>3 wt.%). Simultaneous optimizing strength and SCC resistance in Al-Mg alloys is challenging. This study introduces a nanostructured Al-10Mg (10 wt.%) alloy with improved strength and SCC resistance by dynamic plastic deformation and optimized annealing. The as-deformed sample exhibits a nano-scaled lamellar structure. With rising annealing temperatures, structure size of the alloy increases while dislocation density decreases, transitioning lamellar to equiaxed grains. Nanostructured Al-10Mg alloys annealed at 250°C exhibit superior mechanical properties and reduced SCC susceptibility at sensitization state. The high fraction of low-angle grain boundaries with a reduction in dislocation density can effectively suppress the nucleation and growth of grain boundary precipitates (GBPs) during sensitization, thereby maintaining a relatively low GBPs coverage. The results provide guidance for designing Al-Mg alloys that are stronger and more resistant to SCC with higher Mg content.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.