Suhan Liu, Gongli Wu, Yuqing Chen, Yaoyao Han, Mingchao Zhang, Jincan Kang, Min Tang, Krijn P. de Jong, Qinghong Zhang, Ye Wang, Kang Cheng
{"title":"Direct conversion of syngas into methyl acetate by relay catalysis: From fabrication of active sites to process control","authors":"Suhan Liu, Gongli Wu, Yuqing Chen, Yaoyao Han, Mingchao Zhang, Jincan Kang, Min Tang, Krijn P. de Jong, Qinghong Zhang, Ye Wang, Kang Cheng","doi":"10.1002/aic.18664","DOIUrl":null,"url":null,"abstract":"The direct and selective conversion of syngas into C<sub>2+</sub> oxygenates is challenging due to the complex reaction network. Here, we report a robust relay system for the direct synthesis of methyl acetate (MA) from syngas, which combines CuZnAlO<sub><i>x</i></sub>/H-ZSM-5 for syngas to dimethyl ether (DME) with modified H-MOR for DME carbonylation. The dehydration of methanol to DME on H-ZSM-5 significantly enhanced the hydrogenation of CO on CuZnAlO<sub><i>x</i></sub>, because of high DME equilibrium yields. Blocking of Brönsted acid sites with basic molecules or selective dealumination of 12-membered rings in H-MOR suppressed the zeolite coking. Besides, reaction temperatures above 240°C avoided H<sub>2</sub>O poisoning of carbonylation sites inside 8-MR side pockets of H-MOR, further benefiting the catalytic stability. Eventually, this relay system provided a high MA selectivity of 75% and an acetic acid selectivity of 13% at a CO conversion of 65%, outperforming reported catalysts.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"26 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18664","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The direct and selective conversion of syngas into C2+ oxygenates is challenging due to the complex reaction network. Here, we report a robust relay system for the direct synthesis of methyl acetate (MA) from syngas, which combines CuZnAlOx/H-ZSM-5 for syngas to dimethyl ether (DME) with modified H-MOR for DME carbonylation. The dehydration of methanol to DME on H-ZSM-5 significantly enhanced the hydrogenation of CO on CuZnAlOx, because of high DME equilibrium yields. Blocking of Brönsted acid sites with basic molecules or selective dealumination of 12-membered rings in H-MOR suppressed the zeolite coking. Besides, reaction temperatures above 240°C avoided H2O poisoning of carbonylation sites inside 8-MR side pockets of H-MOR, further benefiting the catalytic stability. Eventually, this relay system provided a high MA selectivity of 75% and an acetic acid selectivity of 13% at a CO conversion of 65%, outperforming reported catalysts.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.