{"title":"Hydrodynamics and mass transfer performance of gas–liquid two-phase flow in a high-throughput chaotic microreactor","authors":"Jia-Ni Zhang, Hao-Tian Tong, Zu-Chun Shi, Ting-Liang Xie, Qiang Liu, Shi-Xiao Wei, Shuang-Feng Yin","doi":"10.1002/aic.18657","DOIUrl":null,"url":null,"abstract":"Microbubbles have been widely applied in various fields. Here, an oscillating feedback microreactor (OFM) was designed to produce microbubbles at high throughput (5–80 mL/min), where the hydrodynamics and mass transfer performance of gas–liquid two-phase system were investigated. The hydrodynamics results showed that three secondary flows (oscillation, vortex, and feedback) could be effectively generated for inducing chaotic flow in the OFM, and the gas phase could be effectively broken up into small microbubbles. The bubble size was more sensitive to the liquid phase flow rate than the gas phase. Two dimensionless prediction formulas for bubble Sauter size were proposed based on gas–liquid flow ratio and Reynolds number at different liquid flow rates. The mass transfer experiments showed that the volumetric average mass transfer coefficient <i>k</i><sub>L</sub><i>a</i> was 1–3 orders of magnitude higher than those of conventional reactors.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"12 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18657","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microbubbles have been widely applied in various fields. Here, an oscillating feedback microreactor (OFM) was designed to produce microbubbles at high throughput (5–80 mL/min), where the hydrodynamics and mass transfer performance of gas–liquid two-phase system were investigated. The hydrodynamics results showed that three secondary flows (oscillation, vortex, and feedback) could be effectively generated for inducing chaotic flow in the OFM, and the gas phase could be effectively broken up into small microbubbles. The bubble size was more sensitive to the liquid phase flow rate than the gas phase. Two dimensionless prediction formulas for bubble Sauter size were proposed based on gas–liquid flow ratio and Reynolds number at different liquid flow rates. The mass transfer experiments showed that the volumetric average mass transfer coefficient kLa was 1–3 orders of magnitude higher than those of conventional reactors.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.