On decomposition of collocation matrices for the Cauchy–Bernstein basis and applications

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Zhao Yang , Tao Chen , Sanyang Liu
{"title":"On decomposition of collocation matrices for the Cauchy–Bernstein basis and applications","authors":"Zhao Yang ,&nbsp;Tao Chen ,&nbsp;Sanyang Liu","doi":"10.1016/j.aml.2024.109391","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we show that collocation matrices of the Cauchy–Bernstein basis can be decomposed as products of a Cauchy–Vandermonde matrix and a block diagonal matrix. A useful application of this result is that the explicit expression of the determinant for the collocation matrices is presented. Consequently, an algorithm is provided to accurately compute the determinants. Numerical experiments confirm the high accuracy of the algorithm.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109391"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924004117","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we show that collocation matrices of the Cauchy–Bernstein basis can be decomposed as products of a Cauchy–Vandermonde matrix and a block diagonal matrix. A useful application of this result is that the explicit expression of the determinant for the collocation matrices is presented. Consequently, an algorithm is provided to accurately compute the determinants. Numerical experiments confirm the high accuracy of the algorithm.
Cauchy-Bernstein基下配置矩阵的分解及其应用
本文证明了Cauchy-Bernstein基的搭配矩阵可以分解为Cauchy-Vandermonde矩阵和块对角矩阵的乘积。该结果的一个有用的应用是给出了配置矩阵行列式的显式表达式。因此,提供了一种精确计算行列式的算法。数值实验证明了该算法具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信