{"title":"On decomposition of collocation matrices for the Cauchy–Bernstein basis and applications","authors":"Zhao Yang , Tao Chen , Sanyang Liu","doi":"10.1016/j.aml.2024.109391","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we show that collocation matrices of the Cauchy–Bernstein basis can be decomposed as products of a Cauchy–Vandermonde matrix and a block diagonal matrix. A useful application of this result is that the explicit expression of the determinant for the collocation matrices is presented. Consequently, an algorithm is provided to accurately compute the determinants. Numerical experiments confirm the high accuracy of the algorithm.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109391"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924004117","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we show that collocation matrices of the Cauchy–Bernstein basis can be decomposed as products of a Cauchy–Vandermonde matrix and a block diagonal matrix. A useful application of this result is that the explicit expression of the determinant for the collocation matrices is presented. Consequently, an algorithm is provided to accurately compute the determinants. Numerical experiments confirm the high accuracy of the algorithm.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.