{"title":"Degeneracy mediated thermal emission from nanoscale optical resonators with high-order symmetry","authors":"Zexiao Wang, Jiayu Li, Zhuo Li, Xiu Liu, Yibai Zhong, Tianyi Huang, Sheng Shen","doi":"10.1515/nanoph-2024-0534","DOIUrl":null,"url":null,"abstract":"Conventional thermal emitters, such as a blackbody or the incandescent filament of a light bulb, lack the directionality or narrow linewidth required in many applications such as thermophotovoltaics and infrared sensing. Although thermal emission from bulk materials is well understood based on phenomenological heat transfer concepts like emissivity and the framework of classical electrodynamics, there still remains a significant gap in our understanding of thermal emission at the nanoscale. In this work, by leveraging the quasi-normal mode theory, we derive a general and self-consistent formalism to describe the thermal radiation from nanoscale resonant thermal emitters with high-order symmetric geometries, which are the basic building blocks of metasurfaces and metamaterials. The complex symmetrical geometries of the emitters yield degeneracy of quasi-normal modes. The introduction of the degeneracy can strongly mediate far-field thermal emission from nanoscale resonators, which is closely correlated to the number of degenerate modes and the coupling among the degenerate modes. Our formalism from the quasi-normal mode theory serves as a general guideline to design the complex metastructures with high-ordered degeneracy to achieve optimized absorption or emission capabilities.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"17 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0534","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional thermal emitters, such as a blackbody or the incandescent filament of a light bulb, lack the directionality or narrow linewidth required in many applications such as thermophotovoltaics and infrared sensing. Although thermal emission from bulk materials is well understood based on phenomenological heat transfer concepts like emissivity and the framework of classical electrodynamics, there still remains a significant gap in our understanding of thermal emission at the nanoscale. In this work, by leveraging the quasi-normal mode theory, we derive a general and self-consistent formalism to describe the thermal radiation from nanoscale resonant thermal emitters with high-order symmetric geometries, which are the basic building blocks of metasurfaces and metamaterials. The complex symmetrical geometries of the emitters yield degeneracy of quasi-normal modes. The introduction of the degeneracy can strongly mediate far-field thermal emission from nanoscale resonators, which is closely correlated to the number of degenerate modes and the coupling among the degenerate modes. Our formalism from the quasi-normal mode theory serves as a general guideline to design the complex metastructures with high-ordered degeneracy to achieve optimized absorption or emission capabilities.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.