The influence mechanism of thermal invasion on spontaneous combustion of different coals using continuous adiabatic heating and non-isothermal oxidation method
{"title":"The influence mechanism of thermal invasion on spontaneous combustion of different coals using continuous adiabatic heating and non-isothermal oxidation method","authors":"Xincheng Hu, Jiawen Cai, Yunquan Yao, Zhaoyang Yu, Jianguo Liu, Shanyang Wei, Zongqing Tang, Shengqiang Yang","doi":"10.1016/j.csite.2024.105565","DOIUrl":null,"url":null,"abstract":"Within deep coal mines, the elevated ground temperature has the potential to induce thermal invasion, thereby exacerbating coal spontaneous combustion (CSC). To investigate the influence mechanism of thermal invasion on CSC, experiments were conducted using coals of different metamorphic degrees (lignite, bitumite, and anthracite) with a continuous adiabatic heating and non-isothermal oxidation method in an oxidation furnace and an in-situ ESR spectrometer. Thermal invasion markedly enhanced the inherent susceptibility of spontaneous combustion of coals by increasing the oxygen consumption rate and lowering the apparent activation energy. This enhancement results from active free radicals generated during thermal invasion which accelerated coal-oxygen reactions during non-isothermal oxidation. These free radicals were found to be mainly carbon-centred radicals adjacent to an oxygen atom (alkyl radicals). An increase in both the g-factor value and free radical concentration was observed with thermal invasion temperature and invasion duration, especially in lignite, leading to a surge of free radical concentration during non-isothermal oxidation. The active free radicals generated during thermal invasion can easily react with oxygen, providing heat for coal-oxygen reactions and enabling rapid free radical generation. These findings offer insights for developing CSC evaluation and prevention strategies in deep mines where high ground temperatures are encountered.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"260 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105565","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Within deep coal mines, the elevated ground temperature has the potential to induce thermal invasion, thereby exacerbating coal spontaneous combustion (CSC). To investigate the influence mechanism of thermal invasion on CSC, experiments were conducted using coals of different metamorphic degrees (lignite, bitumite, and anthracite) with a continuous adiabatic heating and non-isothermal oxidation method in an oxidation furnace and an in-situ ESR spectrometer. Thermal invasion markedly enhanced the inherent susceptibility of spontaneous combustion of coals by increasing the oxygen consumption rate and lowering the apparent activation energy. This enhancement results from active free radicals generated during thermal invasion which accelerated coal-oxygen reactions during non-isothermal oxidation. These free radicals were found to be mainly carbon-centred radicals adjacent to an oxygen atom (alkyl radicals). An increase in both the g-factor value and free radical concentration was observed with thermal invasion temperature and invasion duration, especially in lignite, leading to a surge of free radical concentration during non-isothermal oxidation. The active free radicals generated during thermal invasion can easily react with oxygen, providing heat for coal-oxygen reactions and enabling rapid free radical generation. These findings offer insights for developing CSC evaluation and prevention strategies in deep mines where high ground temperatures are encountered.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.