Ants integrate proprioception as well as visual context and efference copies to make robust predictions

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Océane Dauzere-Peres, Antoine Wystrach
{"title":"Ants integrate proprioception as well as visual context and efference copies to make robust predictions","authors":"Océane Dauzere-Peres, Antoine Wystrach","doi":"10.1038/s41467-024-53856-4","DOIUrl":null,"url":null,"abstract":"<p>Forward models are mechanisms enabling an agent to predict the sensory outcomes of its actions. They can be implemented through efference copies: copies of motor signals inhibiting the expected sensory stimulation, literally canceling the perceptual outcome of the predicted action. In insects, efference copies are known to modulate optic flow detection for flight control in flies. Here we investigate whether forward models account for the detection of optic flow in walking ants, and how the latter is integrated for locomotion control. We mounted <i>Cataglyphis velox</i> ants in a virtual reality setup and manipulated the relationship between the ants’ movements and the optic flow perceived. Our results show that ants compute predictions of the optic flow expected according to their own movements. However, the prediction is not solely based on efference copies, but involves proprioceptive feedbacks and is fine-tuned by the panorama’s visual structure. Mismatches between prediction and perception are computed for each eye, and error signals are integrated to adjust locomotion through the modulation of internal oscillators. Our work reveals that insects’ forward models are non-trivial and compute predictions based on multimodal information.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"260 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53856-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Forward models are mechanisms enabling an agent to predict the sensory outcomes of its actions. They can be implemented through efference copies: copies of motor signals inhibiting the expected sensory stimulation, literally canceling the perceptual outcome of the predicted action. In insects, efference copies are known to modulate optic flow detection for flight control in flies. Here we investigate whether forward models account for the detection of optic flow in walking ants, and how the latter is integrated for locomotion control. We mounted Cataglyphis velox ants in a virtual reality setup and manipulated the relationship between the ants’ movements and the optic flow perceived. Our results show that ants compute predictions of the optic flow expected according to their own movements. However, the prediction is not solely based on efference copies, but involves proprioceptive feedbacks and is fine-tuned by the panorama’s visual structure. Mismatches between prediction and perception are computed for each eye, and error signals are integrated to adjust locomotion through the modulation of internal oscillators. Our work reveals that insects’ forward models are non-trivial and compute predictions based on multimodal information.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信