Powering a molecular delivery system by harvesting energy from the leaf motion in wind.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Serena Armiento, Iwona Bernacka-Wojcik, Abdul Manan Dar, Fabian Meder, Eleni Stavrinidou, Barbara Mazzolai
{"title":"Powering a molecular delivery system by harvesting energy from the leaf motion in wind.","authors":"Serena Armiento, Iwona Bernacka-Wojcik, Abdul Manan Dar, Fabian Meder, Eleni Stavrinidou, Barbara Mazzolai","doi":"10.1088/1748-3190/ad98d3","DOIUrl":null,"url":null,"abstract":"<p><p>Smart agriculture tools as well as advanced studies on agrochemicals and plant biostimulants aim to improve crop productivity and more efficient use of resources without sacrificing sustainability. Recently, multiple advanced sensors for agricultural applications have been developed, however much less advancement is reported in the field of precise delivery of agriculture chemicals. The organic electronic ion pump (OEIP) enables electrophoretically-controlled delivery of ionic molecules in the plant tissue, however it needs external power-supplies complicating its application in the field. Here, we demonstrate that an OEIP can be powered by wind-driven leaf motion through contact electrification between a natural leaf and an artificial leaf. This plant-hybrid triboelectric nanogenerator (TENG) directly charges the OEIP, enabling proton delivery into a pH indicator solution, which triggers visible color changes as a proof-of-concept. The successful delivery of up to 44 nmol of protons was revealed by pH measurements after 17 h autonomous operation in air flow moving the plant and artificial leaves. Several control tests indicated that the proton delivery was powered uniquely by the charges generated during leaf fluttering. The OEIP-TENG combination opens the potential for targeted and self-powered long-term delivery of relevant chemicals in plants, with the possibility of enhancing growth and resistance to abiotic stressors.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad98d3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Smart agriculture tools as well as advanced studies on agrochemicals and plant biostimulants aim to improve crop productivity and more efficient use of resources without sacrificing sustainability. Recently, multiple advanced sensors for agricultural applications have been developed, however much less advancement is reported in the field of precise delivery of agriculture chemicals. The organic electronic ion pump (OEIP) enables electrophoretically-controlled delivery of ionic molecules in the plant tissue, however it needs external power-supplies complicating its application in the field. Here, we demonstrate that an OEIP can be powered by wind-driven leaf motion through contact electrification between a natural leaf and an artificial leaf. This plant-hybrid triboelectric nanogenerator (TENG) directly charges the OEIP, enabling proton delivery into a pH indicator solution, which triggers visible color changes as a proof-of-concept. The successful delivery of up to 44 nmol of protons was revealed by pH measurements after 17 h autonomous operation in air flow moving the plant and artificial leaves. Several control tests indicated that the proton delivery was powered uniquely by the charges generated during leaf fluttering. The OEIP-TENG combination opens the potential for targeted and self-powered long-term delivery of relevant chemicals in plants, with the possibility of enhancing growth and resistance to abiotic stressors.

通过从风中树叶的运动中获取能量来驱动分子传递系统。
智能农业工具以及对农用化学品和植物生物刺激素的先进研究旨在提高作物生产力和更有效地利用资源,同时不牺牲可持续性。近年来,多种先进的农业传感器已经被开发出来,但在农业化学品的精确输送领域的进展却很少。有机电子离子泵(OEIP)能够在植物组织中实现电泳控制的离子分子输送,但它需要外部电源使其在该领域的应用复杂化。在这里,我们证明了OEIP可以通过自然叶子和人造叶子之间的接触电气化,由风力驱动的叶子运动提供动力。这种植物混合摩擦电纳米发电机(TENG)直接给OEIP充电,使质子能够输送到pH指示剂溶液中,从而引发可见的颜色变化,作为概念验证。在空气流动中移动植物和人工叶片17小时后,通过pH测量显示,成功输送了高达44 nmol的质子。几项对照试验表明,质子的传递是由叶片飘动过程中产生的电荷提供的。OEIP-TENG的组合开启了在植物中定向和自供电长期递送相关化学物质的潜力,有可能促进生长和抵抗非生物应激源。& # xD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信