Horng D Ou, Sebastien Phan, Thomas J Deerinck, Akiko Inagaki, Mark H Ellisman, Clodagh C O'Shea
{"title":"ChromEMT: visualizing and reconstructing chromatin ultrastructure and 3D organization in situ.","authors":"Horng D Ou, Sebastien Phan, Thomas J Deerinck, Akiko Inagaki, Mark H Ellisman, Clodagh C O'Shea","doi":"10.1038/s41596-024-01071-2","DOIUrl":null,"url":null,"abstract":"<p><p>Structure determines function. The discovery of the DNA double-helix structure revealed how genetic information is stored and copied. In the mammalian cell nucleus, up to two meters of DNA is compacted by histones to form nucleosome/DNA particle chains that form euchromatin and heterochromatin domains, chromosome territories and mitotic chromosomes upon cell division. A critical question is what are the structures, interactions and 3D organization of DNA as chromatin in the nucleus and how do they determine DNA replication timing, gene expression and ultimately cell fate. To visualize genomic DNA across these different length scales in the nucleus, we developed ChromEMT, a method that selectively enhances the electron density and contrast of DNA and interacting nucleosome particles, which enables nucleosome chains, chromatin domains, chromatin ultrastructure and 3D organization to be imaged and reconstructed by using multi-tilt electron microscopy tomography (EMT). ChromEMT exploits a membrane-permeable, fluorescent DNA-binding dye, DRAQ5, which upon excitation drives the photo-oxidation and precipitation of diaminobenzidine polymers on the surface of DNA/nucleosome particles that are visible in the electron microscope when stained with osmium. Here, we describe a detailed protocol for ChromEMT, including DRAQ5 staining, photo-oxidation, sample preparation and multi-tilt EMT that can be applied broadly to reconstruct genomic DNA structure and 3D interactions in cells and tissues and different kingdoms of life. The entire procedure takes ~9 days and requires expertise in electron microscopy sample sectioning and acquisition of multi-tilt EMT data sets.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01071-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Structure determines function. The discovery of the DNA double-helix structure revealed how genetic information is stored and copied. In the mammalian cell nucleus, up to two meters of DNA is compacted by histones to form nucleosome/DNA particle chains that form euchromatin and heterochromatin domains, chromosome territories and mitotic chromosomes upon cell division. A critical question is what are the structures, interactions and 3D organization of DNA as chromatin in the nucleus and how do they determine DNA replication timing, gene expression and ultimately cell fate. To visualize genomic DNA across these different length scales in the nucleus, we developed ChromEMT, a method that selectively enhances the electron density and contrast of DNA and interacting nucleosome particles, which enables nucleosome chains, chromatin domains, chromatin ultrastructure and 3D organization to be imaged and reconstructed by using multi-tilt electron microscopy tomography (EMT). ChromEMT exploits a membrane-permeable, fluorescent DNA-binding dye, DRAQ5, which upon excitation drives the photo-oxidation and precipitation of diaminobenzidine polymers on the surface of DNA/nucleosome particles that are visible in the electron microscope when stained with osmium. Here, we describe a detailed protocol for ChromEMT, including DRAQ5 staining, photo-oxidation, sample preparation and multi-tilt EMT that can be applied broadly to reconstruct genomic DNA structure and 3D interactions in cells and tissues and different kingdoms of life. The entire procedure takes ~9 days and requires expertise in electron microscopy sample sectioning and acquisition of multi-tilt EMT data sets.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.