GW117 induces anxiolytic effects by improving hippocampal functions.

IF 3.3 3区 心理学 Q1 BEHAVIORAL SCIENCES
Ya-Qi Yang, Murezati Tiliwaerde, Na-Na Gao, Wei Gu, Ting-Ting Zhang, Zeng-Liang Jin
{"title":"GW117 induces anxiolytic effects by improving hippocampal functions.","authors":"Ya-Qi Yang, Murezati Tiliwaerde, Na-Na Gao, Wei Gu, Ting-Ting Zhang, Zeng-Liang Jin","doi":"10.1016/j.pbb.2024.173927","DOIUrl":null,"url":null,"abstract":"<p><p>GW117 functions as both an MT1/MT2 receptor agonist and a 5-HT2C receptor antagonist. This study aimed to investigate the anxiolytic effects of GW117 through behavioral assessments, including the open field test and novelty-suppressed feeding test (NSFT) within a chronic unpredictable mild stress (CUMS) model. GW117 was administered via oral gavage for 21 days to evaluate its sustained anxiolytic effects, with behavioral tests including the NSFT, the Vogel-conflict test, and the O-maze test. To explore the underlying mechanisms, we performed Western blot analyses to assess the expression levels of BCL2-Associated X (Bax), cleaved caspase-3, B-cell lymphoma-2 (Bcl-2), brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP). Additionally, BrdU labeling and immunofluorescence staining were used to examine changes in neuronal regeneration and astrocytogenesis. Our results demonstrated that GW117 produced significant anxiolytic effects across all behavioral assays, both in the CUMS model and during long-term administration. Mechanistic studies revealed that GW117 notably increased the expression of BDNF, GFAP, and Bcl-2, while reducing Bax and cleaved caspase-3 levels in the hippocampus of CUMS model rats. Furthermore, the populations of BrdU-positive and GFAP-positive cells were elevated. These findings suggest that GW117 exerts anxiolytic effects, potentially through enhancements in hippocampal function.</p>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":" ","pages":"173927"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.pbb.2024.173927","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

GW117 functions as both an MT1/MT2 receptor agonist and a 5-HT2C receptor antagonist. This study aimed to investigate the anxiolytic effects of GW117 through behavioral assessments, including the open field test and novelty-suppressed feeding test (NSFT) within a chronic unpredictable mild stress (CUMS) model. GW117 was administered via oral gavage for 21 days to evaluate its sustained anxiolytic effects, with behavioral tests including the NSFT, the Vogel-conflict test, and the O-maze test. To explore the underlying mechanisms, we performed Western blot analyses to assess the expression levels of BCL2-Associated X (Bax), cleaved caspase-3, B-cell lymphoma-2 (Bcl-2), brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP). Additionally, BrdU labeling and immunofluorescence staining were used to examine changes in neuronal regeneration and astrocytogenesis. Our results demonstrated that GW117 produced significant anxiolytic effects across all behavioral assays, both in the CUMS model and during long-term administration. Mechanistic studies revealed that GW117 notably increased the expression of BDNF, GFAP, and Bcl-2, while reducing Bax and cleaved caspase-3 levels in the hippocampus of CUMS model rats. Furthermore, the populations of BrdU-positive and GFAP-positive cells were elevated. These findings suggest that GW117 exerts anxiolytic effects, potentially through enhancements in hippocampal function.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
2.80%
发文量
122
审稿时长
38 days
期刊介绍: Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.
文献相关原料
公司名称 产品信息 采购帮参考价格
索莱宝 Nacl
索莱宝 NaCl
索莱宝 paraformaldehyde
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信