Electrophoretic deposition of chitosan/gelatin/hydroxyapatite nanocomposite coatings on 316L stainless steel for biomedical applications.

Ali Mohammadsadegh, Saeed Reza Allahkaram, Mehrnaz Gharagozlou
{"title":"Electrophoretic deposition of chitosan/gelatin/hydroxyapatite nanocomposite coatings on 316L stainless steel for biomedical applications.","authors":"Ali Mohammadsadegh, Saeed Reza Allahkaram, Mehrnaz Gharagozlou","doi":"10.1088/1748-605X/ad98d6","DOIUrl":null,"url":null,"abstract":"<p><p>In addition to the basic and main parts of hospital equipment, 316L stainless steel is widely utilized in futures such as nails and screws, wires and medical bone clips, dental implants, heart springs (stents), needles, surgical scissors, etc. In the present study, the electrophoretic deposition of a composite based on chitosan, gelatin, nano and microparticles of hydroxyapatite on a 316L stainless steel substrate was investigated. Hydroxyapatite particles are added to it due to the ossification abilities of steel and due to an enhanced adhesion and bone production, chitosan and biocompatible gelatin polymer particles were also added to hydroxyapatite. These particles were mixed in an ethanol/deionized water/acetic acid solution to create a suspension for the electrophoretic procedure. A mixture of 5 g/L of hydroxyapatite, 0.5 g/L of chitosan, and 1 g/L were present in the suspension. The best coating time was 1200s, and the best voltage was 30V. The high density of the hydroxyapatite particles in the chitosan/gelatin polymer matrix was seen in scanning electron microscopy (SEM) pictures. Additionally, the outcomes of the immersing samples in the simulated body fluid (SBF) were evaluated, and the results revealed that, after 14 days, hydroxyapatite nanoparticles grew more rapidly than microparticles. The presence of chitosan, gelatin, and hydroxyapatite in the coating was verified by energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) and Potentiodynamic polarization in Phosphate-buffered saline (PBS) were used to assess the corrosion results. In comparison to the bare sample, the corrosion resistance of the coated sample increased from 1.22×105 to 1.22×105 Ω.cm2 under best circumstances, according to EIS results. Additionally, in the polarization test, the corrosion potential increased from -225.24 to -157.01 mV (vs. SCE) and the corrosion current dropped from 2.159 to 1.201 µA/cm2.&#xD.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad98d6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In addition to the basic and main parts of hospital equipment, 316L stainless steel is widely utilized in futures such as nails and screws, wires and medical bone clips, dental implants, heart springs (stents), needles, surgical scissors, etc. In the present study, the electrophoretic deposition of a composite based on chitosan, gelatin, nano and microparticles of hydroxyapatite on a 316L stainless steel substrate was investigated. Hydroxyapatite particles are added to it due to the ossification abilities of steel and due to an enhanced adhesion and bone production, chitosan and biocompatible gelatin polymer particles were also added to hydroxyapatite. These particles were mixed in an ethanol/deionized water/acetic acid solution to create a suspension for the electrophoretic procedure. A mixture of 5 g/L of hydroxyapatite, 0.5 g/L of chitosan, and 1 g/L were present in the suspension. The best coating time was 1200s, and the best voltage was 30V. The high density of the hydroxyapatite particles in the chitosan/gelatin polymer matrix was seen in scanning electron microscopy (SEM) pictures. Additionally, the outcomes of the immersing samples in the simulated body fluid (SBF) were evaluated, and the results revealed that, after 14 days, hydroxyapatite nanoparticles grew more rapidly than microparticles. The presence of chitosan, gelatin, and hydroxyapatite in the coating was verified by energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) and Potentiodynamic polarization in Phosphate-buffered saline (PBS) were used to assess the corrosion results. In comparison to the bare sample, the corrosion resistance of the coated sample increased from 1.22×105 to 1.22×105 Ω.cm2 under best circumstances, according to EIS results. Additionally, in the polarization test, the corrosion potential increased from -225.24 to -157.01 mV (vs. SCE) and the corrosion current dropped from 2.159 to 1.201 µA/cm2. .

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信