Creation of catalytic activity-improved hyperthermophilic PQQ-dependent aldose sugar dehydrogenase and its efficient use for high performance electro-device

IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Miku Maeno , Yusuke Miki , Kazuki Ito , Haruhiko Sakuraba , Toshihisa Ohshima , Shin-ichiro Suye , Takenori Satomura
{"title":"Creation of catalytic activity-improved hyperthermophilic PQQ-dependent aldose sugar dehydrogenase and its efficient use for high performance electro-device","authors":"Miku Maeno ,&nbsp;Yusuke Miki ,&nbsp;Kazuki Ito ,&nbsp;Haruhiko Sakuraba ,&nbsp;Toshihisa Ohshima ,&nbsp;Shin-ichiro Suye ,&nbsp;Takenori Satomura","doi":"10.1016/j.jbiotec.2024.11.017","DOIUrl":null,"url":null,"abstract":"<div><div>PQQ-dependent aldose sugar dehydrogenase (PQQ-ASD) from the hyperthermophilic archaeon <em>Pyrobaculum aerophilum</em> (PaeASD) has great potential as an element for durable bioelectrodevices owing to its exceptional stability against high temperatures and across a broad pH spectrum. However, its application is constrained by low electric current output of the enzyme-immobilized electrodes, which is attributable to its low catalytic activity. A directed evolutionary approach was performed on PaeASD to improve enzyme activity, resulting in the identification of a PaeASD s24 mutant containing six amino acid substitutions, which exhibited a 16-fold higher specific activity than that of wild type. Although each single amino acid mutant among these substitutions exhibited lower enzyme activity than PaeASD s24, the double mutant R64Q/D350N showed enzyme activity comparable to that of PaeASD s24. These amino acids located in the vicinity of coenzyme PQQ within the PaeASD molecule are also highly conserved with those of PQQ-ASDs reported to date. Thus, these amino acids play crucial roles in the catalytic activity of PQQ-ASD. Furthermore, the <em>K</em><sub>m</sub> value for <span>d</span>-glucose of PaeASD s24-immobilized electrode decreased to approximately 1/3 that of the wild-type-immobilized electrode. These results indicate that the PaeASD s24 mutant is an excellent catalyst for potential bioelectrodevice applications.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"398 ","pages":"Pages 11-17"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165624003092","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

PQQ-dependent aldose sugar dehydrogenase (PQQ-ASD) from the hyperthermophilic archaeon Pyrobaculum aerophilum (PaeASD) has great potential as an element for durable bioelectrodevices owing to its exceptional stability against high temperatures and across a broad pH spectrum. However, its application is constrained by low electric current output of the enzyme-immobilized electrodes, which is attributable to its low catalytic activity. A directed evolutionary approach was performed on PaeASD to improve enzyme activity, resulting in the identification of a PaeASD s24 mutant containing six amino acid substitutions, which exhibited a 16-fold higher specific activity than that of wild type. Although each single amino acid mutant among these substitutions exhibited lower enzyme activity than PaeASD s24, the double mutant R64Q/D350N showed enzyme activity comparable to that of PaeASD s24. These amino acids located in the vicinity of coenzyme PQQ within the PaeASD molecule are also highly conserved with those of PQQ-ASDs reported to date. Thus, these amino acids play crucial roles in the catalytic activity of PQQ-ASD. Furthermore, the Km value for d-glucose of PaeASD s24-immobilized electrode decreased to approximately 1/3 that of the wild-type-immobilized electrode. These results indicate that the PaeASD s24 mutant is an excellent catalyst for potential bioelectrodevice applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biotechnology
Journal of biotechnology 工程技术-生物工程与应用微生物
CiteScore
8.90
自引率
2.40%
发文量
190
审稿时长
45 days
期刊介绍: The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信