Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Fernanda Lopes de Figueiredo, Fabiano Jares Contesini, César Rafael Fanchini Terrasan, Jaqueline Aline Gerhardt, Ana Beatriz Corrêa, Everton Paschoal Antoniel, Natália Sayuri Wassano, Lucas Levassor, Sarita Cândida Rabelo, Telma Teixeira Franco, Uffe Hasbro Mortensen, André Damasio
{"title":"Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass.","authors":"Fernanda Lopes de Figueiredo, Fabiano Jares Contesini, César Rafael Fanchini Terrasan, Jaqueline Aline Gerhardt, Ana Beatriz Corrêa, Everton Paschoal Antoniel, Natália Sayuri Wassano, Lucas Levassor, Sarita Cândida Rabelo, Telma Teixeira Franco, Uffe Hasbro Mortensen, André Damasio","doi":"10.1186/s12934-024-02578-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fermentation of sugars derived from plant biomass feedstock is crucial for sustainability. Hence, utilizing customized enzymatic cocktails to obtain oligosaccharides instead of monomers is an alternative fermentation strategy to produce prebiotics, cosmetics, and biofuels. This study developed an engineered strain of Aspergillus niger producing a tailored cellulolytic cocktail capable of partially degrading sugarcane straw to yield cellooligosaccharides.</p><p><strong>Results: </strong>The A. niger prtT∆ strain created resulted in a reduced extracellular protease production. The prtT∆ background was then used to create strains by deleting exoenzyme encoding genes involved in mono- or disaccharide formation. Consequently, we successfully generated a tailored prtT∆bglA∆ strain by eliminating a beta-glucosidase (bglA) gene and subsequently deleted two cellobiohydrolases and one beta-xylosidase encoding genes using a multiplex strategy, resulting in the Quintuple∆ strain (prtT∆; bglA∆; cbhA∆; cbhB∆; xlnD∆). When applied for sugarcane biomass degradation, the tailored secretomes produced by A. niger resulted in a higher ratio of cellobiose and cellotriose compared with glucose relative to the reference strain. Mass spectrometry revealed that the Quintuple∆ strain secreted alternative cellobiohydrolases and beta-glucosidases to compensate for the absence of major cellulases. Enzymes targeting minor polysaccharides in plant biomass were also upregulated in this tailored strain.</p><p><strong>Conclusion: </strong>Tailored secretome use increased COS/glucose ratio during sugarcane biomass degradation showing that deleting some enzymatic components is an effective approach for producing customized enzymatic cocktails. Our findings highlight the plasticity of fungal genomes as enzymes that target minor components of plant cell walls, and alternative cellulases were produced by the mutant strain. Despite deletion of important secretome components, fungal growth was maintained in plant biomass.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"323"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02578-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Fermentation of sugars derived from plant biomass feedstock is crucial for sustainability. Hence, utilizing customized enzymatic cocktails to obtain oligosaccharides instead of monomers is an alternative fermentation strategy to produce prebiotics, cosmetics, and biofuels. This study developed an engineered strain of Aspergillus niger producing a tailored cellulolytic cocktail capable of partially degrading sugarcane straw to yield cellooligosaccharides.

Results: The A. niger prtT∆ strain created resulted in a reduced extracellular protease production. The prtT∆ background was then used to create strains by deleting exoenzyme encoding genes involved in mono- or disaccharide formation. Consequently, we successfully generated a tailored prtT∆bglA∆ strain by eliminating a beta-glucosidase (bglA) gene and subsequently deleted two cellobiohydrolases and one beta-xylosidase encoding genes using a multiplex strategy, resulting in the Quintuple∆ strain (prtT∆; bglA∆; cbhA∆; cbhB∆; xlnD∆). When applied for sugarcane biomass degradation, the tailored secretomes produced by A. niger resulted in a higher ratio of cellobiose and cellotriose compared with glucose relative to the reference strain. Mass spectrometry revealed that the Quintuple∆ strain secreted alternative cellobiohydrolases and beta-glucosidases to compensate for the absence of major cellulases. Enzymes targeting minor polysaccharides in plant biomass were also upregulated in this tailored strain.

Conclusion: Tailored secretome use increased COS/glucose ratio during sugarcane biomass degradation showing that deleting some enzymatic components is an effective approach for producing customized enzymatic cocktails. Our findings highlight the plasticity of fungal genomes as enzymes that target minor components of plant cell walls, and alternative cellulases were produced by the mutant strain. Despite deletion of important secretome components, fungal growth was maintained in plant biomass.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信