Precise 3D Localization of Intracerebral Implants Using a Simple Brain Clearing Method.

IF 2.5 4区 医学 Q3 NEUROSCIENCES
Julien Catanese, Tatsuya C Murakami, Adam Catto, Paul J Kenny, Ines Ibañez-Tallon
{"title":"Precise 3D Localization of Intracerebral Implants Using a Simple Brain Clearing Method.","authors":"Julien Catanese, Tatsuya C Murakami, Adam Catto, Paul J Kenny, Ines Ibañez-Tallon","doi":"10.31083/j.jin2311207","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Precise localization of intracerebral implants in rodent brains is required for physiological and behavioral studies, particularly if targeting deep brain nuclei. Traditional histological methods, based on manual estimation through sectioning can introduce errors and complicate data interpretation.</p><p><strong>Methods: </strong>Here, we introduce an alternative method based on recent advances in tissue-clearing techniques and light-sheet fluorescence microscopy. This method uses a simplified recipe of the Clear, Unobstructed Brain/Body Imaging Cocktails and Computational Analysis (CUBIC) method, which is a rapid clearing procedure using an aqueous-based solution compatible with fluorescence and fluorescence markers. We demonstrate the utility of this approach in anesthetized transgenic mice expressing channelrhodopsin-2 (ChR2) and enhanced yellow fluorescent fusion (EYFP) protein under the choline acetyltransferase (ChAT) promoter/enhancer regions (<i>ChAT-ChR2-EYFP</i> mice) with implanted linear silicon optrode probes into the midbrain interpeduncular nucleus (IPN).</p><p><strong>Results: </strong>By applying the red fluorescent DiD' dye (DiIC<sub>18</sub>(5) solid (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindodicarbocyanine, 4-Chlorobenzenesulfonate Salt) to the electrode surface, we precisely visualize the electrode localization in the IPN of C<i>hAT-ChR2-EYFP</i> mice. Three-dimensional brain videos from different orientations highlight the potential of this method. Optogenetic responses recorded from electrodes placed in the IPN validate these findings.</p><p><strong>Conclusions: </strong>This method allows for precise localization of brain implantation sites in transgenic mice expressing cell-specific fluorescence markers. It enables virtual brain slicing in any orientation, making it a useful tool for functional studies in mice.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 11","pages":"207"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.jin2311207","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Precise localization of intracerebral implants in rodent brains is required for physiological and behavioral studies, particularly if targeting deep brain nuclei. Traditional histological methods, based on manual estimation through sectioning can introduce errors and complicate data interpretation.

Methods: Here, we introduce an alternative method based on recent advances in tissue-clearing techniques and light-sheet fluorescence microscopy. This method uses a simplified recipe of the Clear, Unobstructed Brain/Body Imaging Cocktails and Computational Analysis (CUBIC) method, which is a rapid clearing procedure using an aqueous-based solution compatible with fluorescence and fluorescence markers. We demonstrate the utility of this approach in anesthetized transgenic mice expressing channelrhodopsin-2 (ChR2) and enhanced yellow fluorescent fusion (EYFP) protein under the choline acetyltransferase (ChAT) promoter/enhancer regions (ChAT-ChR2-EYFP mice) with implanted linear silicon optrode probes into the midbrain interpeduncular nucleus (IPN).

Results: By applying the red fluorescent DiD' dye (DiIC18(5) solid (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindodicarbocyanine, 4-Chlorobenzenesulfonate Salt) to the electrode surface, we precisely visualize the electrode localization in the IPN of ChAT-ChR2-EYFP mice. Three-dimensional brain videos from different orientations highlight the potential of this method. Optogenetic responses recorded from electrodes placed in the IPN validate these findings.

Conclusions: This method allows for precise localization of brain implantation sites in transgenic mice expressing cell-specific fluorescence markers. It enables virtual brain slicing in any orientation, making it a useful tool for functional studies in mice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
173
审稿时长
2 months
期刊介绍: JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信