Nuplon: New synthetic polymers fully degradable in water.

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
John Garner, Kinam Park
{"title":"Nuplon: New synthetic polymers fully degradable in water.","authors":"John Garner, Kinam Park","doi":"10.1016/j.jconrel.2024.11.067","DOIUrl":null,"url":null,"abstract":"<p><p>New crosslinked polyesters, which are fully degradable in the presence of water over several months in the environment, were synthesized by direct polyesterification of multi-hydroxylic alcohols (e.g., pentaerythritol or glycerol), multi-carboxylic acids (e.g., citric acid), and hydroxy acid compounds (e.g., lactic acid). The reaction produced a crosslinked matrix with mechanical properties of solid and useful degradability in the environment. This reaction can be performed with moderate heat (100-200 °C) and without requiring the aid of additional catalysts, inert gas, or vacuum. The crosslinked matrix can be thermoplastic or thermoset, depending on the extent of crosslinking, which is controlled by reaction time and temperature. The polyesters formed with various ratios of the monomers degrade in water in 12 h at 95 °C, 3 days at 70 °C, and about 3 months at 30 °C. These environmentally degradable alkyl polyesters include a range of mechanical strengths and elasticity, making them suitable for various applications. These environmentally degradable, synthetic polymers can replace current non-degradable polymers in various applications. These new polymers are named \"Nuplons\".</p>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":" ","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2024.11.067","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

New crosslinked polyesters, which are fully degradable in the presence of water over several months in the environment, were synthesized by direct polyesterification of multi-hydroxylic alcohols (e.g., pentaerythritol or glycerol), multi-carboxylic acids (e.g., citric acid), and hydroxy acid compounds (e.g., lactic acid). The reaction produced a crosslinked matrix with mechanical properties of solid and useful degradability in the environment. This reaction can be performed with moderate heat (100-200 °C) and without requiring the aid of additional catalysts, inert gas, or vacuum. The crosslinked matrix can be thermoplastic or thermoset, depending on the extent of crosslinking, which is controlled by reaction time and temperature. The polyesters formed with various ratios of the monomers degrade in water in 12 h at 95 °C, 3 days at 70 °C, and about 3 months at 30 °C. These environmentally degradable alkyl polyesters include a range of mechanical strengths and elasticity, making them suitable for various applications. These environmentally degradable, synthetic polymers can replace current non-degradable polymers in various applications. These new polymers are named "Nuplons".

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信